Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties 0 000 000 000

Properties of Selick's filtration of the double suspension

Hao Zhao South China Normal University (joint with J. Grbic and S. Theriault)

Seminar Talk on Topology-Great Bay University May 11, 2023

伺 ト イヨト イヨト

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties 0 0 000 000

Outline

- 1. Selick's filtration $F_k(n)$
 - 1.1. Preliminaries about $\Omega^2 S^{2n+1}$
 - 1.2. Construction of $F_k(n)$
 - 1.3. Question related to $F_k(n)$
- 2. Fibrations related to $F_k(n)$
 - 2.1. Filtration of the classifying space BW_n
 - 2.2. Stable splitting coming from the fibrations

3. Global properties

- 3.1. Homotopy exponents
- 3.2. Our results
- 3.3. Homotopy associativity and homotopy commutativity
- 3.3. Further questions

Outline	1. Selick's filtration $F_k(n)$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties 0 0 000 000
1.1. Prelimina	ries about $\Omega^2 S^{2n+1}$		

- Working in the homotopy category of odd prime *p*-local spaces and maps.
- Serre's *p*-local decomposition

$$\Omega S^{2n} \simeq S^{2n-1} \times \Omega S^{4n-1}.$$

- 4 同 2 4 日 2 4 H

-

Outline	1. Selick's filtration $F_k(n)$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties o o ooo oo
1.1. Preliminar	ies about $\Omega^2 S^{2n+1}$		

- Working in the homotopy category of odd prime *p*-local spaces and maps.
- Serre's *p*-local decomposition

$$\Omega S^{2n} \simeq S^{2n-1} \times \Omega S^{4n-1}.$$

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

- What $\Omega^2 S^{2n+1}$ is good for?
- For $\Omega S^{2n+1} = \Omega \Sigma S^{2n}$, $H_*(\Omega S^{2n+1}) = T(x_{2n})$ is torsion free.
- For $\Omega^2 S^{2n+1} = \Omega^2 \Sigma^2 S^{2n-1}$, there is torsion in $H_*(\Omega^2 S^{2n+1})$.

Outline	1. Selick's filtration $F_k(n)$ $0 \bullet 000$ $0 \circ 000$	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties 0 0 000 000
1.1. Prelimina	ries about $\Omega^2 S^{2n+1}$		

 \bullet (1956, Toda) The first differential of the EHP spectral sequence in some metastable range

$$d_1 \colon \pi_r(\Omega^2 S^{2np+1}) \longrightarrow \pi_r(S^{2np-1})$$

satisfying that $\pi_r(S^{2np-1}) \xrightarrow{E^2_*} \pi_r(\Omega^2 S^{2np+1}) \xrightarrow{d_1} \pi_*(S^{2np-1})$ is multiplication by p.

Outline	1. Selick's filtration $F_k(n)$ $0 \bullet 000$ $0 \circ 000$	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties 0 0 000 000
1.1. Prelimina	ries about $\Omega^2 S^{2n+1}$		

 \bullet (1956, Toda) The first differential of the EHP spectral sequence in some metastable range

$$d_1 \colon \pi_r(\Omega^2 S^{2np+1}) \longrightarrow \pi_r(S^{2np-1})$$

satisfying that $\pi_r(S^{2np-1}) \xrightarrow{E^2_*} \pi_r(\Omega^2 S^{2np+1}) \xrightarrow{d_1} \pi_*(S^{2np-1})$ is multiplication by p.

The differential d_1 depends on two fibre sequences:

$$\Omega^2 S^{2n+1} \xrightarrow{\vartheta} J_{p-1}(S^{2n}) \longrightarrow \Omega S^{2n+1} \xrightarrow{H_p} \Omega S^{2n+1}$$
$$S^{2n-1} \xrightarrow{i_1} \Omega J_{p-1}(S^{2n}) \xrightarrow{T} \Omega S^{2np-1}$$

Outline	1. Selick's filtration $F_k(n)$ 00000 0 0000	2. Fibrations related to <i>F_k(n)</i> 00 000	3. Global properties 0 0 000 000
1.1. Prelimina	ries about $\Omega^2 S^{2n+1}$		

• (1979, Cohen-Moore-Neisendorfer) Constructed a map $\pi\colon \Omega^2 S^{2n+1}\longrightarrow S^{2n-1}$ such that

• This diagram was inductively used to determine the odd p-primary homotopy exponent of S^{2n+1} .

Outline	1. Selick's filtration $F_k(n)$ 00000 0 0000	2. Fibrations related to <i>F_k(n)</i> 00 000	3. Global properties 0 0 000 000
	0.0.1		
1.1 Preliminar	ries about $\Omega^2 S^{2n+1}$		

• Mod-*p* homology of $\Omega^2 S^{2n+1}$

 $H_*(\Omega^2 S^{2n+1}; \mathbb{Z}/p) \cong (\otimes_{i=0}^{\infty} E(x_{2np^i-1})) \otimes (\otimes_{j=1}^{\infty} \mathbb{Z}/p[y_{2np^j-2}])$

- Bocksteins: $\beta(x_{2np^i-1}) = y_{2np^i-2}$ for $i \ge 1$.
- Steenord operations: $\mathcal{P}^1_*(y_{2np^j-2}) = y^p_{2np^{j-1}-2}$ for $j \ge 2$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Outline	1. Selick's filtration $F_k(n)$ $0000 \bullet$ $0000 \bullet$	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties 0 0 000 000
1.1 Duelinsinenis	$c_{n} = c_{n+1} O^2 c_{n+1} O^2 c_{n+1}$		

Selick's filtration of $\Omega^2 S^{2n+1}$

- Homology filtration F_k of $H_*(\Omega^2 S^{2n+1}; \mathbb{Z}/p)$
 - $F_{2k-1} = (\bigotimes_{i=0}^{k-1} E(x_{2np^i-1})) \otimes (\bigotimes_{j=1}^k \mathbb{Z}/p[y_{2np^j-2}])$ for $k \ge 1$.
 - $F_{2k} = (\bigotimes_{i=0}^k E(x_{2np^i-1})) \otimes (\bigotimes_{j=1}^k \mathbb{Z}/p[y_{2np^j-2}])$ for $k \ge 0$.

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ ≧ ∽940

Outline	1. Selick's filtration $F_k(n)$ $\bigcirc \\ \circ \\ $	2. Fibrations related to $F_k(n)$ $\stackrel{\circ\circ}{_{\circ\circ\circ}}$	3. Global properties 0 0 000 000 000

1.1. Preliminaries about $\Omega^2 S^{2n+1}$

Selick's filtration of $\Omega^2 S^{2n+1}$

- Homology filtration F_k of $H_*(\Omega^2 S^{2n+1}; \mathbb{Z}/p)$
 - $F_{2k-1} = (\bigotimes_{i=0}^{k-1} E(x_{2np^i-1})) \otimes (\bigotimes_{j=1}^{k} \mathbb{Z}/p[y_{2np^j-2}])$ for $k \ge 1$. • $F_{2k} = (\bigotimes_{i=0}^{k} E(x_{2np^i-1})) \otimes (\bigotimes_{j=1}^{k} \mathbb{Z}/p[y_{2np^j-2}])$ for $k \ge 0$.
- Geometric realization of F_k gives an H-filtration F_k(n) of Ω²S²ⁿ⁺¹

$$F_{-1}(n) \longrightarrow F_0(n) \longrightarrow \cdots \longrightarrow F_{k-1}(n) \longrightarrow F_k(n) \longrightarrow \Omega^2 S^{2n+1}$$

with $H_*(F_k(n); \mathbb{Z}/p) \cong F_k$.

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

Outline	1. Selick's filtration $F_k(n)$ 00000 \bullet 0000	2. Fibrations related to $F_k(n)$ $\stackrel{\circ\circ}{_{\circ\circ\circ}}$	3. Global properties 0 000 000 000

1.2. Construction of $F_k(n)$

- Let $F_{-1}(n) = \{*\}$ and $F_0(n) = S^{2n-1}$.
- Suppose that for 0 ≤ i ≤ k and any n, F_i(n) has been constructed along with the H-maps

$$F_{-1}(n) \longrightarrow F_0(n) \longrightarrow \cdots \longrightarrow F_{i-1}(n) \longrightarrow F_i(n) \longrightarrow \Omega^2 S^{2n+1}$$

Define $F_{k+1}(n)$ and the *H*-map $F_{k+1}(n) \longrightarrow \Omega^2 S^{2n+1}$ by the homotopy pullback

where $H: \Omega S^{2n+1} \longrightarrow \Omega S^{2np+1}$ is the p^{th} James-Hopf invariant. By universality of homotopy pullback, the *H*-map $F_k(n) \longrightarrow F_{k+1}(n)$ can be constructed.

Outline	1. Selick's filtration $F_k(n)$ 00000 0 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties 0 0 000 000
1.3 Question	related to $F_{i}(n)$		

► (1956, Toda)
$$H_*(\Omega J_{p^k-1}(S^{2n}); \mathbb{Z}/p) \cong F_{2k-1}$$

where $J_{p^k-1}(S^{2n})$ is the $(p^k - 1)^{th}$ -filtration of the James construction $J(S^{2n}) \simeq \Omega \Sigma S^{2n}$.

<ロ> <部> < 部> < き> < き> < き</p>

• The calculation shows that $F_{2k-1}(n) \simeq \Omega J_{p^k-1}(S^{2n})$.

Outline	1. Selick's filtration $F_k(n)$ $0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties 0 0 000 000
1.3 Question	related to $F_{i}(n)$		

Three fibrations

(1988, Gray) Gray's fibration

$$S^{2n-1} \xrightarrow{E^2} \Omega^2 S^{2n+1} \xrightarrow{\nu} BW_n$$

(1956, Toda) Toda's fibration

$$S^{2n-1} \stackrel{i_1}{\longrightarrow} \Omega J_{p-1}(S^{2n}) \stackrel{T}{\longrightarrow} \Omega S^{2np-1}$$

(1981, Selick) Selick's fibration

$$S^{2n-1} \xrightarrow{i_2} F_2(n) \longrightarrow S^{2np-1}\{p\}$$

where $S^{2np-1}\{p\}$ is the fiber of the degree p map on S^{2np-1} .

Outline	1. Selick's filtration $F_k(n)$ $\circ \circ \circ \circ \circ \circ$ $\circ \circ \circ \bullet$	 Fibrations related to F_k(n) ○○ ○○ 	3. Global properties 0 0 000 000
1.3. Question re	elated to $F_k(n)$		

► Conjecture: BW_n is a loop space. (related to Anick's space T^{2np+1}(p))

- ▲日 > ▲ 圖 > ▲ 圖 > ▲ 圖 - シッペマ

Outline	1. Selick's filtration $F_k(n)$ 00000 0 000	2. Fibrations related to $F_k(n)$ ^{OO} ^{OO}	3. Global properties o o ooo oo
1.3. Question	related to $F_k(n)$		

- ► Conjecture: BW_n is a loop space. (related to Anick's space T^{2np+1}(p))
- Question: What connects Toda's, Selick's and Gray's fibrations? Is there any fibration of the type

$$S^{2n-1} \xrightarrow{i_k} F_k(n) \longrightarrow \Box?$$

くぼう くきり くきり

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ $\stackrel{\bullet \circ}{_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{}_{$	3. Global properties 0 0 000 000
2.1. Filtration	of the classifying space BW_n		

Study BWn

There is mod-p homology

$$H_*(BW_n; \mathbb{Z}/p) \cong (\otimes_{i=1}^{\infty} E(x_{2np^i-1})) \otimes (\otimes_{j=1}^{\infty} \mathbb{Z}/p[y_{2np^j-2}])$$

with
$$\beta(x_{2np^{i}-1}) = y_{2np^{i}-2}$$
 for $i \ge 1$ and $\mathcal{P}^{1}_{*}(y_{2np^{j}-2}) = y^{p}_{2np^{j-1}-2}$ for $j \ge 2$.

• Homology filtration M_k of $H_*(BW_n; \mathbb{Z}/p)$

•
$$M_{2k-1} = (\bigotimes_{i=1}^{k-1} E(x_{2np^i-1})) \otimes (\bigotimes_{j=1}^{k} \mathbb{Z}/p[y_{2np^j-2}])$$
 for $k \ge 1$.

•
$$M_{2k} = (\bigotimes_{i=1}^{k} E(x_{2np^i-1})) \otimes (\bigotimes_{j=1}^{k} \mathbb{Z}/p[y_{2np^j-2}])$$
 for $k \ge 1$.

Outline 1. Selick's filtration $F_k(n)$ 2. Fibrations related to $F_k(n)$ 00000 00 00 00 00 00	0 0 000 000 000
--	-----------------------------

2.1. Filtration of the classifying space BW_n

Theorem. (1) There is an *H*-filtration of BW_n

 $\{*\} = M_0(n) \longrightarrow M_1(n) \longrightarrow \cdots \longrightarrow M_{k-1}(n) \longrightarrow M_k(n) \longrightarrow BW_n$

such that $H_*(M_k(n); \mathbb{Z}/p) \cong M_k$ for $k \ge 1$.

(2) There is a commutative diagram with rows being H-fibrations

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ $\stackrel{\circ\circ}{\bullet}_{\circ\circ}$	3. Global properties 0 0 000 000
2.2 Stable sol	itting coming from the fibrations		

• Theorem. There is a stable splitting

$$\Sigma^2 F_k(n) \simeq \Sigma^2 (S^{2n-1} \times M_k(n)).$$

-

Sketch of proof.

(1)
$$\Sigma(X \times Y) \simeq \Sigma X \vee \Sigma Y \vee \Sigma X \wedge Y$$
.
(2) Define a map
 $\beta \colon F_k(n) \stackrel{\Delta}{\longrightarrow} F_k(n) \times F_k(n) \stackrel{1 \times \nu_k}{\longrightarrow} F_k(n) \times M_k(n)$

Outline	1. Selick's filtration F _k (n) 00000 0 000	2. Fibrations related to $F_k(n)$ $\stackrel{\circ\circ}{\bullet}_{\bullet}_{\bullet}$	3. Global properties 0 0 000 000

2.2. Stable splitting coming from the fibrations

(3) The composite

$$\Sigma^2 F_k(n) \stackrel{\Sigma^2 \beta}{\longrightarrow} \Sigma^2(F_k(n) \times M_k(n)) \stackrel{\gamma}{\longrightarrow} \Sigma^2(S^{2n-1} \times M_k(n))$$

is a homotopy equivalence, where the map γ is the composite

$$\Sigma^{2}(F_{k}(n) \times M_{k}(n)) \simeq \Sigma^{2}F_{k}(n) \vee \Sigma^{2}M_{k}(n) \vee \Sigma^{2}F_{k}(n) \wedge M_{k}(n) \longrightarrow$$

$$\Sigma^{2}\Omega^{2}S^{2n+1} \vee \Sigma^{2}M_{k}(n) \vee \Sigma^{2}\Omega^{2}S^{2n+1} \wedge M_{k}(n) \xrightarrow{ev \vee 1 \vee (ev \wedge 1)}$$

$$S^{2n+1} \vee \Sigma^{2}M_{k}(n) \vee S^{2n+1} \wedge M_{k}(n) \simeq \Sigma^{2}(S^{2n-1} \times M_{k}(n))$$

where $ev: \Sigma^2 \Omega^2 S^{2n+1} \longrightarrow S^{2n+1}$ is the evaluation map.

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ $\stackrel{\circ\circ}{\stackrel{\circ\circ}{\stackrel{\circ\circ}{\circ}}}$	3. Global properties 0 0 000 000
2.2. Stable spl	itting coming from the fibrations		

• Corollary.

(1) Recover Gray's (1988) result by letting $k \to \infty$ $\Sigma^2 \Omega^2 S^{2n+1} \simeq \Sigma^2 (S^{2n-1} \times BW_n)$ (2) $\Sigma^2 \Omega J_{p-1}(S^{2n}) \simeq \bigvee_{i=0}^{\infty} S^{(2np-2)i+2n+1}$ (3) $\Sigma^2 F_2(n) \simeq$ $S^{2n+1} \lor (\bigvee_{i=1}^{\infty} P^{(2np-2)i+3}(p)) \lor (\bigvee_{i=1}^{\infty} P^{(2np-2)i+2n+2}(p))$ where $P^m(p)$ is the mod p Moore space.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Outline	 Selick's filtration F_k(n) 00000 0000 	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties

• The homotopy exponent of a space X is the least power of p which annihilates the p-torsion in $\pi_*(X)$. We write this as $\exp(X) = p^r$.

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties ● ○ ○ ○

- The homotopy exponent of a space X is the least power of p which annihilates the p-torsion in $\pi_*(X)$. We write this as $\exp(X) = p^r$.
- In 1978, Selick showed that $\exp(S^3) = p$.

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 000	 Fibrations related to F_k(n) ○○ ○○ 	3. Global properties ● ○ ○ ○ ○

- The homotopy exponent of a space X is the least power of p which annihilates the p-torsion in $\pi_*(X)$. We write this as $\exp(X) = p^r$.
- In 1978, Selick showed that $\exp(S^3) = p$.
- In 1979, Cohen-Moore-Neisendorfer showed that $\exp(S^{2n+1}) = p^n$ for n > 1.

Outline	1. Selick's filtration F _k (n) 00000 0 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties

- The homotopy exponent of a space X is the least power of p which annihilates the p-torsion in $\pi_*(X)$. We write this as $\exp(X) = p^r$.
- In 1978, Selick showed that $\exp(S^3) = p$.
- In 1979, Cohen-Moore-Neisendorfer showed that $\exp(S^{2n+1}) = p^n$ for n > 1.
- In 1987, Neisendorfer showed that $\exp(P^m(p^r)) = p^{r+1}$ for $m \ge 3, r \ge 1$.

Outline	1. Selick's filtration F _k (n) 00000 0 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties

- The homotopy exponent of a space X is the least power of p which annihilates the p-torsion in $\pi_*(X)$. We write this as $\exp(X) = p^r$.
- In 1978, Selick showed that $\exp(S^3) = p$.
- In 1979, Cohen-Moore-Neisendorfer showed that $\exp(S^{2n+1}) = p^n$ for n > 1.
- In 1987, Neisendorfer showed that $\exp(P^m(p^r)) = p^{r+1}$ for $m \ge 3, r \ge 1$.
- The classical Lie groups of low-rank by Theriault and some homogeneous spaces by Grbic and Z.

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 000	 Fibrations related to F_k(n) ○○ ○○ 	3. Global properties ● ○ ○ ○ ○

- The homotopy exponent of a space X is the least power of p which annihilates the p-torsion in $\pi_*(X)$. We write this as $\exp(X) = p^r$.
- In 1978, Selick showed that $\exp(S^3) = p$.
- In 1979, Cohen-Moore-Neisendorfer showed that $\exp(S^{2n+1}) = p^n$ for n > 1.
- In 1987, Neisendorfer showed that $\exp(P^m(p^r)) = p^{r+1}$ for $m \ge 3, r \ge 1$.
- The classical Lie groups of low-rank by Theriault and some homogeneous spaces by Grbic and Z.
- Not too much is known about the homotopy exponents of many other spaces.

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties

3.2. Our results

Theorem. Let $k \ge 1$. Then we have

• for
$$n \ge 1$$
, $p^{np^k-2} \le \exp(F_{2k-1}(n)) \le p^{np^k}$;

• for
$$n \ge 2$$
, $p^{n-2} \le \exp(F_{2k}(n)) \le p^n$;

• for
$$n = 1$$
, $p \le \exp(F_{2k}(n)) \le p^2$.

- ▲日 > ▲ 圖 > ▲ 圖 > ▲ 圖 - シッペー

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties

3.2. Our results

Theorem. Let $k \ge 1$. Then we have

• for
$$n \ge 1$$
, $p^{np^k-2} \le \exp(F_{2k-1}(n)) \le p^{np^k}$;

• for
$$n \ge 2$$
, $p^{n-2} \le \exp(F_{2k}(n)) \le p^n$;

• for
$$n = 1$$
, $p \le \exp(F_{2k}(n)) \le p^2$.

The proof depends on two commutative diagrams:

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties

3.2. Our results

Theorem. Let $k \ge 1$. Then we have

• for
$$n \ge 1$$
, $p^{np^k-2} \le \exp(F_{2k-1}(n)) \le p^{np^k}$;

• for
$$n \ge 2$$
, $p^{n-2} \le \exp(F_{2k}(n)) \le p^n$;

• for
$$n = 1$$
, $p \leq \exp(F_{2k}(n)) \leq p^2$

The proof depends on two commutative diagrams:

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties 0 0 0 0 0 0 0 0 0 0 0 0 0

3.3. Homotopy associativity and homotopy commutativity

Consider the global properties of $F_k(n)$ and $M_k(n)$.

Definition 1. An *H*-space *X* with multiplication $\mu: X \times X \longrightarrow X$ is homotopy commutative if $\mu \simeq \mu \circ T$ where $T: X \times X \longrightarrow X \times X$ is the interchange map.

Definition 2. A space X is a homotopy associative H-space if there exist two maps $M_2: X \times X \longrightarrow X$ and $M_3: I \times X \times X \times X \longrightarrow X$ such that

- 1. $M_2(*,x) = x = M_2(x,*)$ for $x \in X$,
- 2. M_3 is a homotopy between $M_2 \circ (M_2 \times 1)$ and $M_2 \circ (1 \times M_2)$,
- 3. $M_3(t, *, x, y) = M_3(t, x, *, y) = M_3(t, x, y, *) = M_2(x, y)$ for $t \in I$ and $x, y \in X$.

ロト (得) (ヨ) (ヨ) (ヨ)

Outline	1. Selick's filtration $F_k(n)$ 00000 000	2. Fibrations related to $F_k(n)$ $\stackrel{\circ\circ}{_{\circ\circ\circ}}$	3. Global properties ○ ○ ○ ○

3.3. Homotopy associativity and homotopy commutativity

Two known results

- (1989, Gray) F_{2k-1}(n) ≃ ΩJ_{p^k-1}(S²ⁿ) is a homotopy associative, homotopy commutative H-space for p ≥ 3.
- ► (2006, Grbić) F₂(n) is a homotopy associative, homotopy commutative H-space for p > 3.

Question: Including $F_2(n)$, is $F_{2k}(n)$ ($k \ge 0$) a homotopy associative, homotopy commutative *H*-space?

Outline	1. Selick's filtration $F_k(n)$	2. Fibrations related to $F_k(n)$ oo ooo	3. Global properties
	000		000 00

3.3. Homotopy associativity and homotopy commutativity

Theorem. $F_{2k}(n)$ $(k \ge 0)$ is a homotopy associative *H*-space for p > 3.

Sketch of proof.

(1) Show that $E^2: S^{2n-1} \longrightarrow \Omega^2 S^{2n+1}$ is a homotopy associative map for p > 3.

(2) Zabrodsky's lemma: the pullback of two homotopy associative maps is a homotopy associative *H*-space.

(3) Consider the homotopy pullback

Note. $F_{2k}(n)$ $(k \ge 0)$ actually admits an A_{p-1} -structure.

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties ○ ○ ○ ○ ○		
3.3. Further questions					

Questions

Q1. Gray has shown that $F_{2k-1}(n)$ is a homotopy associative, homotopy commutative *H*-space. Whether $F_{2k}(n)$ is also a homotopy associative, homotopy commutative *H*-space or not?

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties ○ ○ ○ ○
3.3. Further qu	lestions		

Questions

Q1. Gray has shown that $F_{2k-1}(n)$ is a homotopy associative, homotopy commutative *H*-space. Whether $F_{2k}(n)$ is also a homotopy associative, homotopy commutative *H*-space or not? Note. The associativity has already been shown by us.

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ $\stackrel{OO}{\sim}$ $\stackrel{OO}{\sim}$	3. Global properties ○ ○ ○ ○
3.3. Further qu	lestions		

Questions

Q1. Gray has shown that $F_{2k-1}(n)$ is a homotopy associative, homotopy commutative *H*-space. Whether $F_{2k}(n)$ is also a homotopy associative, homotopy commutative *H*-space or not? Note. The associativity has already been shown by us.

Q2. It is already known that $F_k(n)$ is atomic for n > 1. Is $\Omega F_k(n)$ or $\Omega^2 F_k(n)$ still atomic for n > 1?

Outline	1. Selick's filtration <i>F_k(n)</i> 00000 0 000	2. Fibrations related to $F_k(n)$ 00 000	3. Global properties ○ ○ ○ ○
3.3. Further qu	Jestions		

THANK YOU