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Geometric quantity

For non-negative integers g , n such that 2g − 2 + n ≥ 1.

Xg ,n is a complete hyperbolic surface with genus g and n cusps.
1 constant curvature −1;
2 finite area 2π(2g − 2 + n).
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Geometric quantity

Assume X is a complete hyperbolic surface with finite area, the Cheeger
constant h(X ) of X is defined as

h(X ) = inf
α

ℓ(α)
min{Area(A), Area(B)} ,

where α runs over all curves such that X \ α = A ∪ B.
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Geometric quantity

Assume X is a compact hyperbolic surface.

The eigenvalues of the Laplacian operator ∆X could be enumerated in the
increasing order as:

0 = λ0(X ) < λ1(X ) ≤ λ2(X ) ≤ ...

Spectral gap: λ1(X ) = λ1(X ) − λ0(X ).

Cheng 75′

λ1(X ) ≤ 1
4 + 16π2

diam(X )2

As a direct corollary
lim sup

g→∞
λ1(Xg) ≤ 1

4 .
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Geometric quantity

The first eigenvalue is related to the Cheeger constant:

Theorem (Cheeger-Buser)
Assume X is a compact hyperbolic surface, then

1
4h(X )2 ≤ λ1(X ) ≤ 2h(X ) + 10h(X )2.
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Geometric quantity

For a complete non-compact hyperbolic surface X of finite area,

Spec(∆X ) = {possible discrete eigenvalue} ∪ [14 , ∞).

The following fundamental question remains open:

Question
Does a complete non-compact hyperbolic surface of finite area always have
a non-zero eigenvalue?
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Geometric quantity

Assume X is a complete non-compact hyperbolic surface, instead of λ1,
consider Rayleigh quotient RayQ(X ):

RayQ(X ) = inf
f ∈L2(X),

∫
X f =0

∫
X |∇f |2∫

X f 2 .

Similar to the case of compact

Theorem (Buser 82’)
Assume X is a complete non-compact hyperbolic surface with finite area,
there exists a universal constant c such that

1
4h(X )2 ≤ RayQ(X ) ≤ c · h(X ).
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Geometric quantity

Theorem
Assume X is a complete non-compact hyperbolic surface with finite area.
If

RayQ(X ) <
1
4 ,

then X has a non-zero first eigenvalue λ1(X ) with

λ1(X ) = RayQ(X ).

small Cheeger constant =⇒ small Rayleigh quotient
=⇒ the first eigenvalue exists and small.
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Geometric quantity

Consider
Γ(N) def= {A ∈ SL(2,Z); A ≡ I2(mod N)}.

Then X (N) = H/Γ(N) is a non-compact hyperbolic surface with genus
g(N) and n(N) cusps, where

g(N) = 1 + N3

24

(
1 − 6

N

) ∏
p|N

(
1 − 1

p2

)
≍ N3;

n(N) = N2

2
∏
p|N

(
1 − 1

p2

)
≍ N2.
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Geometric quantity

Selberg 65’ proved that
λ1(X (N)) ≥ 3

16 .

Conjecture (Selberg)

λ1(X (N)) ≥ 1
4 .

Kim-Sanark 03’: 975
4096
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Geometric quantity

Question
Is there a sequence {Xg}g≥2 of compact hyperbolic surfaces with genus g,
such that

lim inf
g→∞

λ1(Xg) ≥ 1
4 .

It was solved by Hide-Magee 21’.
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Weil-Petersson model

Mg ,n : the moduli space of all hyperbolic surfaces Xg ,n with genus g and
n punctures.

Mg ,n consists of all equivalent classes of hyperbolic metrics on topological
surface Sg ,n and it is homeomorphic to R6g−6+2n.

There exists a natural Weil-Petersson metric on Mg ,n, and Mg ,n has
finite volume Vg ,n under this metric.

Hence Weil-Petersson metric induces a probability measure on Mg ,n.
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Weil-Petersson model

Random surface theory: study the asymptotic behaviors of geometric
quantities of hyperbolic surfaces in the probability space.

1 Guth-Parlier-Young 11’: Bers constant;
2 Mirzakhani 13’,Wu-Xue 22’: diameter;
3 Mirzakhani-Petri 19: systole;
4 Mirzakhani 13’,Palier-Wu-Xue 22’, Nie-Wu-Xue 23’:

separating systole;
5 Monk 22’: Weyl law;
6 Wu-Xue 22’: prime geodesic theorem;
7 Rudnick 23’: GOE;
8 He-S.-Wu-Xue 23’: non-simple systole,
...
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Weil-Petersson model

Conjecture
For any ϵ > 0,

lim
g→∞

Probg
wp

(
X ∈ Mg ; λ1(X ) >

1
4 − ϵ

)
= 1.

1 Mirzakhani 13’: 0.0024;
2 Wu-Xue 22’, Lipnowski-Wright 22’: 3

16 ;
3 Anantharaman-Monk 23’: 2

9 .
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Weil-Petersson model

Theorem (Hide 22’)

Assume n(g) = O(gα)
(
0 ≤ α < 1

2

)
. Then

lim
g→∞

Probg ,n(g)
wp

(
X ∈ Mg ,n(g); Spec(∆X ) ∩ (0, c(α) − ϵ) = ∅

)
= 1,

where c(α) = 1
4 −

(
2α+1

4

)2
. c(0) = 3

16 , c
(

1
2

)
= 0.

Based on the examples of X (N) (n ≍ g2/3),

Question
If n(g) grows significiantly faster than √g, asymptotically does a generic
surface in Mg ,n(g) have a uniform positive spectral gap as g → ∞.
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Main results

Theorem (S.-Wu 23’)
If n(g) satisfies that

lim
g→∞

n(g)
√g = ∞ and lim

g→∞
n(g)

g = 0,

then for any ϵ > 0

lim
g→∞

Probg ,n(g)
WP

(
X ∈ Mg ,n(g); λ1(X ) < ϵ

)
= 1.

1 This theorem answered the question before;
2 {X (N)}N≥3 are exceptional in the moduli space.
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Main results
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g→∞

n(g)
√g = 0,

then

lim
g→∞

Probg ,n(g)
WP

(
X ∈ Mg ,n(g); Spec(∆X ) ∩ (0, 0.0024) = ∅

)
= 1.

1 The proof follows Mirzakhani’s method;
2 For the case of α close to 1

2 , this theorem is stronger than Hide’s
theorem;

3 For the case of α close to 0, this theorem is weaker than Hide’s
theorem.
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Main results

Theorem (S.-Wu 23’)
Assume n(g) satisfies that

lim
g→∞

n(g)
√g = a ∈ (0, ∞).

Then for any 0 < C < log 2√
4π(log 2+π)

,

lim
g→∞

Probg
WP

(
X ∈ Mg ,n(g); h(X ) ≤ C√

1 + C2

)
= 1 − e−λ(a,C),

where λ(a, C) = a2

4π2 (cosh πC − 1).
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Main results

1. For fixed C > 0, lim
a→∞

1 − e−λ(a,c) = 1. Hence this theorem corresponds
to the first theorem before for the case of a → ∞.

2. For fixed C > 0, lim
a→0

1 − e−λ(a,c) = 0. Hence this theorem corresponds
to the second theorem before for the case of a → 0.

3. For any x > 0, denote by

y(x) = lim inf
g→∞

Probg ,n(g)
WP

(
X ∈ Mg ,n(g); λ1(X ) ≤ x

)
.
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Main results

According to the result of Zograf 84’:

If n(g) satisfies that lim
g→∞

n(g)
g = ∞, then for any ϵ > 0

lim sup
g→∞

sup
X∈Mg,n(g)

λ1(X ) < ϵ.

The proof is based on the method of Yang-Yau 80’.
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Main results

Remaining case: n(g) ≍ g .

Study the asymptotic behavior of Weil-Petersson volume Vg ,n(g), which is
related to the theory of intersection numbers.

Conjecture

lim
g+n→∞

V 2
g ,n

Vg ,n−1Vg ,n+1
= 1.

1 Manin-Zograf 00’: fixed g ;
2 Mirzakhani-Zograf 15’: n = o(g).

Proposition (S.-Wu 23’)

lim sup
g+n→∞

V 2
g ,n

Vg ,n−1Vg ,n+1
≤ 1.
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Special geodesics

For any surface X ∈ Mg ,n, denote by N0,3(X , L) the set consisting of all
simple closed geodesics in X such that

X \ α ≃ S0,3 ∪ Sg ,n−1 and ℓ(α) ≤ L.

Denote by N0,3(X , L) = |N0,3(X , L)|, then
N0,3(·, L) : Mg ,n → Z≥0

is a random variable on the probability space Mg ,n.
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Special geodesics

Set L(g) =
( √g

n(g)

) 1
2 . By direct calculation,

Eg ,n(g)[N0,3(·, L(g))] ≍
√g · n(g)
g + n(g) .
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Special geodesics

1. If lim
g→∞

n(g)√g = ∞. Then as g → ∞,

L(g) → 0 and Eg ,n(g)[N0,3(·, L(g))] → ∞.

Hence

lim
g→∞

Probg ,n(g)
WP

(
X ∈ Mg ,n(g); N0,3(X , L(g)) ≥ 1

)
= 1.

It follows that as g → ∞, a generic surface X ∈ Mg ,n(g) has a simple
closed geodesic α such that

1 α has short length;
2 α cuts off a “S0,3” from X .

Hence h(X ) is very small =⇒ X has small non-zero eigenvalue.
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Special geodesics

2. If lim
g→∞

n(g)√g = 0, then as g → ∞,

L(g) → ∞ and Eg ,n(g)[N0,3(·, L(g))] → 0.

Hence

lim
g→∞

Probg ,n(g)
WP

(
X ∈ Mg ,n(g); N0,3(X , L(g)) ≥ 1

)
= 0.

It follows that for generic X ∈ Mg ,n(g), if simple closed geodesic α cuts
off a “S0,3” from X , then α has large length.

The behavior is totally different. In this case, we complete proof by
following Mirzakhani’s method.
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Special geodesics

3.If lim
g→∞

n(g)√g = a.

One may prove that for small L > 0, random variable N0,3(·, L) converges
to a Poisson distribution.

It follows that

lim
g→∞

Probg ,n(g)
WP

(
X ∈ Mg ,n(g); N0,3(X , L) ≥ 1

)
= 1 − e−λ(a,2πL).
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Special geodesics

In this case, we may prove that the Cheeger constant is realized by some
simple closed curve α′ “near” α. Then the proof is complete by some
hyperbolic calculation.
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Special geodesics
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Special geodesics

Thanks for your listening!
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