Kernel methods in computational lithography

Ming Yang

School of Computing, Hubei Polytechnic University

2023.12.07

School of Computing, Hubei Polytechnic University

< ロ > < 回 > < 回 > < 回 > < 回 >

Ming Yang

- **2** Kernel methods
- **3** Optimization
- 4 EUV lithography

《□▷ 《□▷ 《□▷ 《 ■▷ 《 ■▷ 《 ■ ▷ ④ Q C
School of Computing, Hubei Polytechnic University

Ming Yang

Optimization

EUV lithography

Lithography

• Pattern transfer

Figure 1: Litho stone

- * ロ > * @ > * 目 > * 目 > 「目 > のへの

School of Computing, Hubei Polytechnic University

Kernel methods in computational lithography

Mask, Exposure systems(Lens), Materials, …

Figure 2: Photo-lithography

School of Computing, Hubei Polytechnic University

イロト イボト イヨト イヨト

Kernel methods in computational lithography

Background	
0000000	

Patterning process

Figure 3: Working flow

< ロ > < 回 > < 回 > < 回 > < 回 > School of Computing, Hubei Polytechnic University

Ming Yang

Kernel methods in computational lithography

Э

Optimization 0000 EUV lithography

Manufacturing

Figure 4: Chips

・ ▲ 日 > ▲ 国 > ▲ 国 > ▲ 国 > > ◇ ◇

School of Computing, Hubei Polytechnic University

Ming Yang

Background	
0000000	

Optimization 0000 EUV lithography

Optical proximity effects

Figure 5: Optical proximity effects (B) (E) (E) (E) (C)

School of Computing, Hubei Polytechnic University

Kernel methods in computational lithography

Optimization 0000

Optical proximity correction

Problem

Processed mask pattern $\mathcal{I}(m(x, y)) \neq m(x, y)$.

- OPC is required for the technology node $\leqslant 22$ nm.
- The simulation of process transformation *I*_{T,p,v,α,β,γ,...}().
- Working on $|\mathcal{I}(m(x,y)) m(x,y)|$?

Figure 6: Without correction

School of Computing, Hubei Polytechnic University

イロト イポト イヨト イヨト

Kernel methods in computational lithography

Ming Yang

Э

Optimization 0000

Optical proximity correction

Problem

Construct Δm such that $\mathcal{I}(m(x, y) + \Delta m) = m(x, y)$.

- $\#[m(x,y) + \Delta m] \sim 10^8$.
- Inverse lithography technology(ILT) \mathcal{I}^{-1} .

Figure 7: With correction

School of Computing, Hubei Polytechnic University

イロト 不得 トイヨト イヨト

Kernel methods in computational lithography

3

Optical intensity

$$\mathcal{I}(x,y) = \iiint \mathsf{TCC}(f',g';f'',g'')M(f',g')M^*(f'',g'')$$
$$e^{-2\pi i [(f'-f'')x+(g'-g'')y]} df' dg' df'' dg''.$$

- Transmission cross coefficient TCC(f', g'; f'', g'') = $\int \int S(f, g)P(f' + f, g' + g)P^*(f'' + f, g'' + g)dfdg.$
- M(f', g'): the Fourier transformation of m(x, y).
- *M**(*f*", *g*"): conjunction.

イロト 不得 トイヨト イヨト

Ming Yang

Э

Ming Yang

School of Computing, Hubei Polytechnic University

$$\mathcal{I}(x,y) = \iiint \mathsf{TCC}(f',g';f'',g'')M(f',g')M^*(f'',g'')$$
$$e^{-2\pi i[(f'-f'')x+(g'-g'')y]} df' dg' df'' dg''.$$
$$\mathsf{TCC}(f',g';f'',g'') = \iint S(f,g)P(f'+f,g'+g)P^*(f''+f,g''+g)df dg.$$

Figure 9: Optical system

Ming Yang

School of Computing, Hubei Polytechnic University

문 🛌 문

Background	Kernel methods	Optimization	EUV lithography
0000000	000●0000	0000	00
Kernel decom	nosition		

• Suppose
$$\operatorname{TCC}(f', g'; f'', g'') = \sum_{k=1}^{N} \lambda_k \Phi_k(f', g') \Phi_k^*(f'', g'')$$

 $\mathcal{I}(x, y) = \iiint \operatorname{TCC}(f', g'; f'', g'') M(f', g') M^*(f'', g'')$
 $e^{-2\pi i [(f'-f'')x+(g'-g'')y]} df' dg' df'' dg''.$
 $= \sum_{k=1}^{N} \lambda_k |\phi_k(x, y) * m(x, y)|^2$

School of Computing, Hubei Polytechnic University

イロト イヨト イヨト イヨト

Ming Yang

Kernel methods in computational lithography

æ

Background

Kernel methods

Optimization

EUV lithography

Kernel decomposition

Figure 10: Optical kernels

School of Computing, Hubei Polytechnic University

Kernel methods in computational lithography

Background

Kernel methods

Optimization

EUV lithography

Contour simulation

Figure 11: Wafer contour

Ming Yang

School of Computing, Hubei Polytechnic University

Kernel methods in computational lithography

э

Bac	kgr	ounc	
	bõc		

Optimization

EUV lithography

Look-up table

Background	Kernel methods	Optimization	EUV lithography
0000000	0000000●	0000	00
Other effects			

$$\mathcal{I}(x,y) = \sum_{k=1}^{N} \lambda_k |\phi_k(x,y) * m(x,y)|^2 + \xi(x,y) * m(x,y)$$
$$+ \eta(x,y) * m(x,y)$$

Figure 13: Negative tone develop

Ming Yang

School of Computing, Hubei Polytechnic University

문 🛌 문

Optimization •000

EUV lithography

Process window

Figure 14: Process window

Ming Yang

Kernel methods in computational lithography

School of Computing, Hubei Polytechnic University

< □ > < □ > < □</p>

18 / 23

E

Optimization

EUV lithography

Sub-resolution assist feature

Figure 15: Assist feature

Ming Yang

School of Computing, Hubei Polytechnic University

э

・ロッ ・ロッ・ ・ ヨッ

Kernel methods in computational lithography

2

Optimization

EUV lithography

Source mask co-optimization

Figure 16: Source mask co-optimization

School of Computing, Hubei Polytechnic University

< A

Kernel methods in computational lithography

Figure 17: Source mask co-optimization

	_	_	_		_
~				-	
		_			_
		-			-

Kernel methods in computational lithography

School of Computing, Hubei Polytechnic University

Optimization

EUV lithography ●○

Extreme-ultraviolet (EUV) lithography

Projection optics

20,000 parts Weight: 2 tons

Illumination system

15,000 parts Weight: 1.5 tons

イロト イロト イヨト イヨト

School of Computing, Hubei Polytechnic University

Figure 18: Source mask co-optimization

Ming Yang

Thanks

- ▲日を▲聞を▲聞を▲聞を 通し めんの

School of Computing, Hubei Polytechnic University