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Introduction to Dirac operator

From Theoretical Physics

» The energy-momentum relation of a free relativistic particle:
E? = A|p|* + m?c.
» The usual identification
p <> —ihV.
» Goal: Find a self-adjoint operator D, satisfying

(D) = —?R2A + m2ct.



Introduction to Dirac operator

From Theoretical Physics

» Dirac’s solution:

D, = —icha - V +mc?B,

where -V = Z a0, and 9, = ax , a1, (g, g and B are 4 x 4
k=1
Pauli-Dirac matrices

with



Introduction to Dirac operator

From Theoretical Physics

» Free Dirac equation:

0
2 (t, ) = DU(t, x).
zhat (t, ) (t, )

Question. What does that mean?
m U :RM3 - C? is the wave function of the Dirac particle.
m Dirac particles: spin 1/2, massive fermions (leptons, quarks).
m Anti-particle, spin up or down.
m Probability

P:/ P(:c,y,z)dmdydz:/ |U(t, z)|2dz.
\%4 \%4



Introduction to Dirac operator

From Physics to Mathematics

Question. How to generalize the Dirac operator to R"*1?

Idea: Since D, = —icha - V + mc?3, we only need to generalize
the Dirac matrices ({au}3_;, B).

Definition (Dirac Matrices)

For (n+ 1) dimensional space, ({ax}}_;,05)) is an (n + 1)-tuple of
Dirac matrices if

- B, ay are symmetric N X N matrices.
- o0+ ooy = 25ijv a; B+ Ba; =0, ,82 =1, fori,5=1,...,n.

The smallest possible dimension N of the spinor space to admit
Dirac matrices is 2" .

Reference: B. Thaller, The Dirac Equation, Theoretical and
Mathematical Physics, Springer Berlin, 1992,



Introduction to Dirac operator

From Physics to Mathematics

Proposition (Existence and Structure of Dirac Matrices)

There is an (n + 1)-tuple of Dirac matrices in My (C) when
N = 21"371. Moreover, we have ({ax}i_y, B) has the form

(0 a _( Inp O
ak_(a; 0)’ ﬂ‘( 0 —Inp )’

where the ay, are % X % matrices (which are Hermitian if n is odd).

» Examples of Low Dimension.
n=1 NZQ, alzal,ﬁzag.

n=2 N =2, o =01, g =02, = 03.

0 o I 0 .
n=3 N =4, «a; <Uj 0>,B (0 _I>,where1_]_3.



Introduction to Dirac operator

From Physics to Mathematics

» Examples of High Dimension.

Bosonic String Theory: n = 25. Superstring Theory: n = 9.
M-Theory: n = 10.

» Observation. For n = 3, we also use the gamma matrices:

V=8, 7Y =aj, 1< <3

The Clifford relation: v#y" + 4¥~y#* = —2¢*"I. This is related to
Clifford algebra.

» Clifford Algebra Let e4,...,e, be an orthonormal basis of
(R™, g) . Then the (finite dimensional!) associative algebra

LR = QB {ei-e; +¢;- e = 0,¢F = —1}

is called the Clifford algebra of R™ . CI® (R™) denotes its
complexification.



Introduction to Dirac operator

A brief review of Clifford Algebras

Definition (Clifford Algebra)

V = K", g a nondegenerate bilinear form on V. The Clifford
algebra is defined by

CUV,g) :==T(V)/I(V,9),

where T'(V') is the tensor algebra of V', I(V, g) is the ideal
generated by all elements of the form z ® x + g(z,x)1, for z € V.

Remark (1) Ci(V, g) is generated by the relation
roy+y-w=-=29xyl, zyeV

(2) {es -y, 1 1<y < ... < i <n,0<k<n}is a basis of
Cl(V,g). Thus, dim CIl(V, g) = 2™.

10/59



Introduction to Dirac operator

From Physics to Mathematics

Theorem (Representation of Clifford Algebra)

There exists a unique representation of smallest dimension of the
algebra CIT (R™) on a complex vector space A, :

CI®(R") — End (A,,), dimA, =2/,
A, : space of (Dirac) spinors.

» Example. The representation of C1§ := CI®(R?) is given by
CIS — M;(C)
1— FE,e1 — g1,ea — go,e1 -2 — —11.

where

10 i 0 0 i 0 —i
oo )= 2) e (0) 7= 3)

11/59



Introduction to Dirac operator

From Mathematics
» The Spin(n) group is a two-fold covering of SO(n) and can be
realized in Cl (R"),
Spin(n) = {z1 - ... - z9,z; € R" and |z;| = 1}.
» Every vector x € R™ acts on A,, by an endomorphism:

R" x A, 3 (z,¢) — x - € A, Clifford multiplication
uw:R"® A, — A,.

» The Spin(n)-representation R™ @ A,, splits into

R"® A, = A, @ ker(u)

12 /59



Introduction to Dirac operator

From Mathematics

» Idea: Attach a copy of A, to every point x of a Riemannian
manifold (M, g) :
Tangent bundle: Clifford Multiplication ™"

T(M)= | TuM M $,(M)
xeM

Spinor bundle: Q
J UcM
X

s) = | Anlx)
xeM
» ldea: Denote by F (M, g) the oriented frame bundle. M

admits a spin structure iff its SO(n)-principal bundle Pgo ) M
admits a reduction Pgpin )M — Psom)yM to the group
Spin(n) — SO(n).

13 /59



Introduction to Dirac operator

From Mathematics

» ldea:

SM < PSpin(n) M

7
%“ﬁ

TM = F(M,g) > PsomM

» Spinor bundle SM = Pgyin () M X1 A
» Section A section ¢ € I'(SM) is locally given by

Ylo =[5, 0],

where 5 € T'(PspinnyM), U C M, 0: U — Ay,

14 /59



Introduction to Dirac operator

From Mathematics

m The first Stiefel-Whitney class wy (M) € H'(M,Zs) vanishes
if and only if M is orientable.

m The second Stiefel-Whitney class wo(M) € H?(M, Zs)
vanishes if and only if M admits a spin structure.

m There is a non-canonical bijection
{[spin structures] } <+ Hom(m (M), Zsy) <> H* (M, Zy).

m H, S™"(n > 2) are spin manifolds with a unique spin structure.
S1 admits 2 different spin structures. 7™ admits 2" different
spin structures.

15 /59



Introduction to Dirac operator

From Mathematics

m The Clifford multiplication on SM is the fiberwise action
given by

w:TM®@SM — SM

span
XY —> X -,

where X = [5,a], X -9 :=[§,«- 0], a- o is the Clifford
multiplication on A,,.

TM = PSpin(n)M X Ad R™.

16 /59



Introduction to Dirac operator

From Mathematics
The lift from a section s € 'y (PsomyM) to 5 € Tu(Pspinn)M)

PSpin(n)M
i.7 Ln
UCcM-—= PSO(n)M
induces a connection 1-form on Py ) M
TPspin(n)M —— spin,,
5 -7
i " lAd*

TU € TM —* > TPgp( M —*— s0,

-

17 /59



Introduction to Dirac operator

From Mathematics

» Spinorial Covariant derivative Take an orthonormal basis
o1,...,0n of A, to get a local section {1g }1<a<n by

Yo = [3,04] € Ty(SM).

Then the spinorial covariant derivative is given locally by

n

1
Vo = 1 Z g(Vei, ejlei - ej - q.

ij=1

18 /59



Introduction to Dirac operator

From Mathematics

» Dirac operator The Dirac operator is the composition of the
covariant derivative acting on sections of SM with the Clifford
multiplication

D:=poV.

Locally, we have
D: T(SM) -5 I(T*M ® SM) -5 T(SM)
n n span
P Y e @V — Y e Ve,
i=1 i=1

» Dirac operator is a first order differential operator which is
elliptic and formally self-adjoint.

19 /59



Introduction to Dirac operator

From Mathematics

» Example 1. Let A/ = R", SM = R" x C", then every spinor
field ¢» € T'(SM) is in fact a map ¢ : R* — CV, and the Dirac
operator is given by

n n

D= ¢-0; =Y nle)d,
=1 =1

where i(e;) € My (C) satisfies pu(e;)p(e;) + plej)p(es) = 205N
(This is in fact the Dirac matrices)
» Example 2. Let M = R?, (e, e3) be the orthonormal basis of

R2. The complex volume element wc := i[nTH]el Cep = 1€1 - 9.
Then Ay = A;r & A5 = spanc{ey, e2}, where
1
A = 5(1 +we) - Ag = spanc{l £ ea}.

20 /59



Introduction to Dirac operator

From Mathematics

Then each spinor field ¢ € T'(SM) is given by two complex
functions f, g : R? — C, such that

Y= f(1+e2)+g(l—e2).
The Dirac operator becomes
Dip = (e1- 01+ ez 0) (f(1+e2) +g(1 —e2))

= (1 + 62) (281 + 82) g+ (1 — 62) (2(91 — (92) f span
= 2i0,9(1 + e2) + 2i0: f(1 — e2).

(0 0,
D2z<8z O)

in the basis {1 + e2,1 — ea} of Ag. Hence the Dirac operator can

be considered as a generalization of the Cauchy-Riemann operator.
21 /59

That is



Introduction to Dirac operator

Dirac operator and Laplace operator

» Dirac operator enjoys analogous properties to the
Laplace-Beltrami operator:

m conformally covariant
m self-adjoint

m discrete eigenvalues of finite multiplicity

» Difference:
m Dirac operator is a first order differential operator
m Dirac operator acts on spinors (which are complex vectors)

m the spectrum of Dirac operator accumulates both +o0o and
—00

22 /59



Introduction to Dirac operator

Supplement to the Similarity

Case |. Consider Au = W (x)|u|P~2u, W > 0.
(1) A positive defined.

1 1
Iw) = gl = [ Weupds

has at least one nontrivial critical point.
(2) A strongly indefined.

1 _
1) = 5 (1P = | ?) =5 [ W@l

has at least one nontrivial critical point.

23 /59



Introduction to Dirac operator

Supplement to the Differences

Case II. Consider Au + W (x)|u[P~2u =0, W > 0.
(1) A poitive defined.

1) = gl + /W ) ulPdz

has only trivial solution .
Proof. If u is a critical point of I, then

I(u) — %dl(u) Sy = (% - %)/W(:Eﬂu\pdx <0.

This implies u = 0.
(2) A strongly indefined.
1
1) = 3 (Wt =)+ [ Wi
has at least one nontrivial critical point. Only need to consider

10 = 5 (I P = 1) =5 [ Wi)lupda.

24 /59



Introduction to Dirac operator

From Many Aspects

Mathematical
Physics
v T N
Clifford ~ +— Dirac Operator —  Elliptic
Algebras Operators
N\ I e
Differential

Geometry

25 /59



Spectral Properties of the Dirac opeartor

Spectral Properties of the Dirac opeartor
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Case . V() =0
Recall H,, = —icha - V + mc?3 + w is well-defined on L2(R3,C*)

with domain Z(H,,) = H'(R3,C*) and formal domain
P(H,) = Hz (R3,CY).

Proposition

o(H,) = 0e(H,) =R\ (—mc? + w, mc? + w).

Proof. Symbol of Hy is denoted by Hy. By

o(Hp) = {A € C: 3¢ e R", s.t. det(Hy(&) — M) = 0},

det(Ho (&) — AI) = (\* —m?c" — [¢).

= o(Hy) = (—00, —mc?] U [mc?, 00)
= o(H,) = (—o0, —mc? + w] U [mc? + w, )

27 /59



Spectral Properties of the Dirac opeartor

Case Il. Periodic Potential

For H, = —icha -V +mc?B + V(z)3 + w, we assume
(V,) V € CL(R3,[0,00)), V() is 1-periodic with respect to xy.

Proposition (Bartsch, Ding, 06, JDE)
o(H,) = 0.(H,) C R\ (—=mc?® + w, mc® + w), and

inf o (Hop) NRT < me? + sup V(z).
z€R3

28 /59



Spectral Properties of the Dirac opeartor

Case lll. Coercive Potential

For H, = —icha -V +mc?B + V(z)B + w, we assume

(Vi) V € CHR3,R), for any b > 0, meas(V?) < oo, where
Vii={zeR?: V(z) <b}

Proposition (Bartsch, Ding, 06, JDE)

G {8l = @i lElLs) = {W + ,u71«/2 1n € N}, where

0<pr <o < iy — 00.

29 /59



Spectral Properties of the Dirac opeartor

Case IV. Coulomb-type Potential

Set Hy = —icha -V + mc26 + V(z), we assume
(V) lim V(z)=0, — T — K1 <V < Ky = sup V(z),

|z| =00 z€R3
where K1, Ky >0, K1 + Ko — mc? < vVm2ct — mc?12,
v e (0,vme?), K1, Ky € R.

Proposition (Esteban, Lewin, Séré, 21, PLMS)

Ae(Ho) = inf sup  AT(Ho, ), where
Y CCEEED pey\{o}
H
M(Hy, o) == sup (Hoy, ¥) € (K3 — mc?,00).

= (o, )T (% dJ)

X € C§°(R3,C?)

30/59



Spectral Properties of the Dirac opeartor

Case V. Coulomb-type Potential

(V)) lim V(z) =0,V € C(R*\ P,R), where

|z|—o00

P={zf}{_ U {33;}3]:1 And

lim V(z) =400, lilfn+ V(x)|z — x| <,

=z} T}
lim V(z) = —oo, lim V(z)lz —z;| <,

where v;,v; € (0,1).

Proposition (Dolbeault, Esteban, Séré, 06, JEMS)

(i) oe(A) = (=00, —mc?] U [me?, 00).
(i) (A) = (=00, —mc2] U {\F : k > 1} U [mc?, 00).

31/59



Variational Setting

Variational Setting
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Variational Setting

Working Space

» Free Dirac operator D = —icha - V + mc?f3.
» The orthogonal decomposition of L?(R3,C*)

>=L"oL , u=u"+u",

with D is positive (or negative) definite on L™ (or L™).
» Working Space E is the completion of 2(|D|'/?) under the
inner product

(u,0) = R D["u, | D "20) .
» The orthogonal decomposition of £ = H'/2(R3, C*) :
E=FE"®E",

where E¥ = EN L*.

33 /59



Variational Setting

Working Space

In the Fourier domain & = (£1,&2,&3), we have

. 2 .
D(€) = cha - €+ mc®B = <Z’;L§ Iz _CZ’CQ§2> .

The unitary transformation U(¢) which diagonalize D(€) is given
explicitly by

(mc? 4+ NIy + Bea - € YL LAY BLf
IA(mc2 + \) - B

€l
where T4 = /(1 £mc?/)). Then we have

U()DEU (&) = AB.

U() =

34 /59



Contents Introduction to Dirac operator Spectral Properties of the Dirac opeartor Variational Setting Applications: Limit Probler

Working Space

» The orthogonal projections P* on E with kernel ET are
given by
1
Pru(z) = B (I+ \D|_1D) u(z).

—

Pru(e) = §U—1<s><f4 + B)U(£)(6).

Proposition (Dong, Ding, Guo, 23, JDE)

Let Ef := E* N LP forp € (1,00). Then there holds
IP = chEf @ chE,,

where cl, denotes the closure with respect to the norm in LP.
That is, there exists 7, > 0 for every p € (1,00) such that

molluF || e < |ullz, Yu € ENLP.

35 /59



Applications: Limit Proble

Applications: Limit Problem
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Applications: Limit Proble

Back to Physics: Lagrangian Formalism
» Nonlinear Dirac Model One of its general forms is
ichy Ouh — mc*ip — Gy +0u(Gy,5) =0,
» Lagrangian density
L= ichd_w“aulb — mcnp — G, v, o, auz/_)).

»Solitary wave solutions (¢, ) = e~ “!u(x).
» Stationary nonlinear Dirac equations

—icha - Vu +mc?fu+ Vu — wu = F,(u).
» Dirac operator

H, = —icha - V+mcB+V —w

37 /59



Applications: Limit Proble

Three Physical Model

» Dirac-Slater Model The one-particle Dirac-Slater equation
becomes

—icha - Vw + mcz/Bw + Vdﬁ - Ce:c‘w‘Q/gw = wwa

where Co,, = 3Cks (£)"%, ¢ : RS - C*.
» Dirac-Soler Model The one-particle Dirac-Soler equation
becomes

—icha - Vi +me?By — g(p)y*p = wip,

where ¢ : R3 — C*.
» Massive Thirring Model

(=i7°0; + m°) u + ge (—\u!Zu + (uT'y‘r’u) 75u> = wu,

where u : R — C2.

38 /59



Applications: Limit Proble

Nonrelativistic limit

Physical Meaning.

Case |: Noncompactness Potentials.
Case |I: Compactness Potentials.
Case Ill: Normalized Solutions.

Applications I: Nonexistence Results.

Applications II: Nonlinear Schrédinger Equations.

39 /59



Applications: Limit Proble

Nonrelativistic limit | (Noncompactness)

Consider the following nonlinear Dirac equation:

—ica -V +me?Bip — wip = [P, (1)

where 1 : R3 — C*.
Nonlinear Schrodinger equations:

{—Aul + vuy = 2mlulP~2uy,

—Aus + vug = 2m|ulP~2us,

where u = (u1,us)” : R — C2, v > 0 is a constant.

40 /59
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Without Potentials

Theorem (Y. Ding, X. Dong, Q. Guo, CVPDE, 2021)

Let m,v > 0,p € (2,5/2]. Assume {cy}, {wy} satisfy
0 < cp,wpn — +00,
0<wy < mci,
v

2
mc,, — wWp — —,
m

where n — co. If {1, = (un,v,)T} is a ground state of NDE (1)
with wy,, ¢y, then there is a mg, such that for m < my,

Uy, —u and v, =0 In Hl(Rg,(C2),
n — oo, where u : R3 — C? is a wave function of NSE (2) with

frequency v.
41 /59



Applications: Limit Proble

Nonrelativistic limit [l (Assumptions on Potentials)

(VWh) V(xz),W(z) >0 for all z € R®, and V,W € L™ (R*,R).
(VWs) If (4;) C R? is a sequence of Borel sets such that its
Lebesgue measure |A;| < R, for all j € N and some R > 0, then

lim W(z) =0, uniformly in j € N.
re0 JA;nBg(0)

Furthermore, one of the below conditions occurs
(VWs) ¥ e L (R, R).
(VWy) There exists ¢ € (2,3) such that
w
Vv(x()‘?_q — 0 as ‘CL’| — 400.

42 /59



Applications: Limit Proble

Nonrelativistic limit Il (Compactness)

Consider the following nonlinear Dirac equation:
—ica - Vi +mc?By — wp + V(2)p = W ()P, (3)

where v : R3 — C*.
A coupled system of nonlinear Schrodinger equations:

—Auy + 2vuy + 2mV (x)uy = 2mW (x)|ulP~u, @)
—Aug + 2vug + 2mV (z)ug = 2mW () |ulP~2us,

where u = (u1,u)? : R — C2, v > 0 is a constant.

43 /59
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With Potentials

Theorem (Dong, Ding, Guo, JDE, 2023)
Let m,v > 0,p € (2,8/3].Assume {c, }, {wn} satisfy

0 < cp,wpn — 400,

0<wy < mci,
met — w, — 1,
m
where n — co. Under the hypothesis (VW1) — (VW3), (VW3) or
(VWy), and ||V ||eo < inf(mc? — wy), if {tn = (un,vs)T} is a
sequence of ground states for NDE (3). Then

U, —u and v, —0 in HI(R?’,CQ),

asn — oo, where u : R® — C2 is a solution for the NSE (4).
44 /59



Applications: Limit Proble

Nonrelativistic limit Il (Normalized Solutions)

Consider the following constraint Dirac equation

—ica - Vi +me2 B — wip = f(a, [Y)),

/ 2 = 1,
]R3

where f(, [y[) = T * (K¢ ") K[ip]72 — Plp|*~2.
Nonlinear Schrodinger equations with L2-constraint:

(NDE).

—Au+ vu = 2mPlul*2u + 2mT * (K |u|*) K |u|F2u,
lul?dx =1,

R3
(NSE)

where u = (u1,uz)? : R — C2, v > 0 is a constant.

45 /59



Applications: Limit Proble

Nonrelativistic limit Il (Assumptions on Nonlinearities)

Assumptions on nonlinearities
(K1) K € CY(R3,(0,4+0o0)) and lim K(z) = 0.
|z|—o0

(P1) P € CYR3,(0,+0c0)) and | llim P(z) =0.
T|—0o0

(P2) There exist a constant C' > 0, a number 1 € (0, 2%52%) such
that for small ¢ > 0, and all x € R3, it holds that

P(z) > Cel'P(ex).

(1) T e LY M5 (R3) 1 ¢(R3\ {0}, (0, +00)).

Model Nonlinearities

(i) K(z) = el where a > 0.

(ii) P(x) = ﬁ where p is given in assumption (P).
(i) ['(z) = ‘a%' where 7 € (0,7 — 3k).

46 /59
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Theorem (Chen, Ding, Guo, Wang, 2023, preprint)

Set k €[2,7/3),s € (2,8/3]. If assumptions (K1), (P1), (P2) and
(T'1) hold, then for a given ¢ > O large enough, there exists

we € (0,mc?) and a function u, € H'(R3,C*), such that (we, u.)
is a normalized solution of (NDFE).. In addition, we have

—00 < liminf(w. — mc?) < lim sup(we — me?) < 0.
€00 c—00

Theorem (Chen, Ding, Guo, Wang, 2023, preprint)

There is a positive constant v > 0, and a sequence
(Weyy» Ve, = (Un,v)T) which is a solution of (NDE),,, such that

Up —u, vy, —0 in HY(R3 C?),

where u : R® — C? is a ground state solution of (NSE).

47 /59



Applications: Limit Proble

Applications |: Nonexistence Results.

Questions. What if two components of solitary wave solution
equal zero?

Fourier transform+Dirac matrices = only trivial solutions =
Nonexistence of solutions of Majorana-type (i.e. u™ =u").

-3 PO 1 ks i —~ _i
uf (&) =a) (m + 5 i+ — h(;) ) uy (&) =a() (A(E)tfl - Elb(—;fzul bZ) i )
3 L Etis . & —~
“;(5) =a() (uz + Ib(sl) 2M3 — TZ:)MA) , uy (§)=a(&) (A(S)lfz — 51;(;)52 w3+ %MQ,
2 7
a(E)——(lJr ) mc? + /m2c* + c2|E?

2/m2ct + 2|g |2
2 fm2c® + 2IE2 2
mc m=c® + c*|&|* —mc
A(E)— =

L+ mc? m62+\/mzc4+cz|§|z'

b(E) = Atm _mc+,/m202+\é\24

48 /59



Applications: Limit Proble

Applications |: Nonexistence Results.
(F) Given f € C (H'(R*,C*),R). For any r > 0,
f(u) #0, Vue &),
where &9 := {u = (u1,u2,0,0) € H}(R?,C*) : [Jul|zn =7} .

Theorem

Let m,v >0, p € (2,8/3]. Assume that ||V ||~ < v/(2m). Under
the hypothesis (VW) — (VWs,), (VW3) or (VWy) and (F), there
exists co > 2m/v, such that for any

2

c>coe €(0,1/co),w € (Mmc® —e —v/m,mc® + ¢ —v/m),

(NDE), possesses no ground state u with f(u) = 0.

fur|* + Juzl” = us|® + Jual? o Jusl|gz + uall] = 7.

49 /59



Applications: Limit Proble

Applications |I: NSE.

Set k € [2,7/3),s € (2,8/3]. If assumptions (K1), (P1), (P2) and
(T'1) hold, then there is (v,u) € (0,00) x H'(R? C?), solves

—Au+ vu = 2mPlul|"2u + 2mT * (K|u|*) K |u|"~2u,

lu|?dz = 1,
R3

50 /59



Applications: Limit Proble

Sketch of the Proof

Key Ingredient 1: Existence of ground state solutions in H' for

any m,c > 0 and w € (—mc?, mc?).

inf ®(¢) = inf su d(¢),
Jof (¢) weEwEE%M (¢)

M:={ucE\E™ :®'(u)-u=0 and ®'(u)-¢=0,VpecE }.

Key Ingredient 2: Uniform Boundedness of Solutions.
Step 1. {uy,} is bounded in LP. (Taking test function)
Step 2. {u,} is bounded in L2. (Variational equality)
Step 3. {u,} is bounded in H'. (p € (2,8/3])

Key Ingredient 3: |v,| ;1 = O(%), i%f llun||gr > p > 0.

Cn
Key Ingredient 4: New functional ¥. {u,} is a (PS)-sequence for
U + Compactness (Compactness Potential/ Small Mass)

51/59



Applications: Spectrum Zero Problem
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Spectrum Zero Problem

» The Spectrum Zero Problem: the existence of nontrivial
solutions u € X to the equation
Au = N(u),

where X is a Banach space, A is a self-adjoint linear operator and
N is a bounded nonlinear operator.

» Two cases: zero belonging to the interior of the essential
spectrum and zero belonging to the boundary.

» Simplify the model by setting ¢ = /i = 1, then the stationary
nonlinear Dirac equations becomes

—ia- Vu+ mpPu — wu = Fy(z,u).

» The linear operator of this problem H, = —iar- V +mpf — w.
» The spectrum of H,, on L?:

o(H,) = (—o0,—m —w] U [m — w, 00).
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Spectrum Zero Problem of Type |

» Set F(u) = F(ut,u™), p € (2,3), and assume that
(F1) Fect(C*xCHLR).
(Fy) There is a1, as > 0, such that for any s,t € C*, we have

ar ([s|” + [t?) < F(s,t) < as(|s]? + [t + []*).
(F3) There is by, by > 0, such that for any s,t € C*, we have
2F(s,t)+b1|s|P < (OsF, )+ (0 ', t) < 3F(s,t)—ba (|s[P + [t%) .

(Fy) Thereis ¢; >0, dy > dy > 0, such that for any s, € C*, we
have

(0 F,8) < cils|P + du[t]?, (OeF,t) >do (Jt|* —|s|P) .
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Applications: Limit Probler

Introduction to Dirac operator Spectral Properties of the Dirac opeartor Variational Setting

Contents

Spectrum Zero Problem of Type |

Theorem (Guo, Ke, Ruf, 23, preprint)

Let (F1)-(Fy4) be satisfied, consider the following nonlinear Dirac
equation

—ia - Vu+mpu — wu = F(u).

(1) Ifw € [m,00), then there are only trivial solution uw = 0 in
H(R3,C%).

(2) If w € [-m,m), then there are at least one nontrivial solution
w in HY(R3,C*).

Unknown | Existence Nonexistence

O I

—m 0

3 e
A\ 4
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» Sketch of the Proof.

Step 1. Establish Pohozaev's identity and variational identity to
solve the case w > m.

Step 2. Set a variational problem when w € (—m,m).

Step 3. Check the topological properties and geometric structure
of the functional ® on Ej.

Step 4. Use the critical point theorem to obtain a (C).-sequence.
Step 5. Use the Lions's concentration compactness argument to
get a new sequence after translation.

Step 6. Show the limit point is the critical point.

Step 7. Peturbation of the functional.

Step 8. Show the uniformly boundedness.

Step 9. Construct a sequence via Step 6.

Step 10. Show the limit point is the critical point when w = —m.
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Spectrum Zero Problem of Type Il

» Assumptions on the nonlinearity F":
(F) FecC!(R3x C*R) is 1-periodic in ;,i = 1,2, 3.
(F) There are constants a; > 0 and 2 < v < p < 3 such that

ar|ult < yF(z,u) < Fy(z,u)-u, forall z e R ueR.
(F3) There are constants ag > 0 and 2 < p < ¢ < 3 such that

\Fy(z,u)| < ao (JufP~! + [u|!),  forallz € R® ueR.

Theorem (Dong, Ding, Guo, 24, St. Petersberg Math. J.)

Suppose (F1) — (F3) hold. If w = —m, then nonlinear Dirac
equation has a nontrivial (weak) solution uw € H, (R, C*).
Moreover, u lies in Lt (R3, (C4) for p <t <3.
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Spectrum Zero Problem

» New Ingredients:

Type I.

1. Pohozaev's identity of nonlinear Dirac equations.

2. Critical Point Theorem of strongly indefinite functionals.
3. Perturbation of the functional.

Type Il.
1. Choose a proper working space that is neither too big nor too small.
2. Establish a new embedding theorem for the new working space.

3. Construct a new sequence from the modified functional.
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Thanks for your attention !
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