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From Theoretical Physics

IThe energy-momentum relation of a free relativistic particle:

E2 = c2|p|2 +m2c4.

I The usual identification

p↔ −i~∇.

I Goal: Find a self-adjoint operator Dc satisfying

(Dc)
2 = −c2~2∆ +m2c4.
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From Theoretical Physics

I Dirac’s solution:

Dc = −ic~α · ∇+mc2β,

where α · ∇ =
3∑

k=1

αk∂k, and ∂k = ∂
∂xk

, α1, α2, α3 and β are 4× 4

Pauli-Dirac matrices

αk =

(
0 σk
σk 0

)
, β =

(
I 0
0 −I

)
,

with

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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From Theoretical Physics

I Free Dirac equation:

i~
∂

∂t
Ψ(t, x) = DcΨ(t, x).

Question. What does that mean?

Ψ : R1+3 → C4 is the wave function of the Dirac particle.

Dirac particles: spin 1/2, massive fermions (leptons, quarks).

Anti-particle, spin up or down.

Probability

P =

∫
V
P (x, y, z)dxdydz =

∫
V
|Ψ(t, x)|2dx.
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From Physics to Mathematics

Question. How to generalize the Dirac operator to Rn+1?

Idea: Since Dc = −ic~α · ∇+mc2β, we only need to generalize
the Dirac matrices ({αk}3k=1, β).

Definition (Dirac Matrices)

For (n+ 1) dimensional space, ({αk}nk=1, β)) is an (n+ 1)-tuple of
Dirac matrices if

- β, αk are symmetric N ×N matrices.

- αiαj + αjαi = 2δij , αiβ + βαi = 0, β2 = 1, for i, j = 1, ..., n.

The smallest possible dimension N of the spinor space to admit

Dirac matrices is 2[n+1
2

].
Reference: B. Thaller, The Dirac Equation, Theoretical and
Mathematical Physics, Springer Berlin, 1992.
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From Physics to Mathematics

Proposition (Existence and Structure of Dirac Matrices)

There is an (n+ 1)-tuple of Dirac matrices in MN (C) when

N = 2[n+1
2

]. Moreover, we have ({αk}nk=1, β) has the form

αk =

(
0 ak
a∗k 0

)
, β =

(
IN/2 0

0 −IN/2

)
,

where the ak are N
2 ×

N
2 matrices (which are Hermitian if n is odd).

I Examples of Low Dimension.

n=1 N = 2, α1 = σ1, β = σ3.

n=2 N = 2, α1 = σ1, α2 = σ2, β = σ3.

n=3 N = 4, αj =

(
0 σj
σj 0

)
, β =

(
I 0
0 −I

)
, where 1 ≤ j ≤ 3.
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From Physics to Mathematics

I Examples of High Dimension.
Bosonic String Theory: n = 25. Superstring Theory: n = 9.
M-Theory: n = 10.
I Observation. For n = 3, we also use the gamma matrices:

γ0 = β, γ0γj = αj , 1 ≤ j ≤ 3.

The Clifford relation: γµγν + γνγµ = −2gµνI. This is related to
Clifford algebra.
I Clifford Algebra Let e1, . . . , en be an orthonormal basis of
(Rn, g) . Then the (finite dimensional!) associative algebra

Cl (Rn) :=
⊗

Rn/
{
ei · ej + ej · ei = 0, e2

i = −1
}

is called the Clifford algebra of Rn . ClC (Rn) denotes its
complexification.
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A brief review of Clifford Algebras

Definition (Clifford Algebra)

V = Kn, g a nondegenerate bilinear form on V . The Clifford
algebra is defined by

Cl(V, g) := T (V )/I(V, g),

where T (V ) is the tensor algebra of V , I(V, g) is the ideal
generated by all elements of the form x⊗ x+ g(x, x)1, for x ∈ V .

Remark (1) Cl(V, g) is generated by the relation

x · y + y · x = −2g(x, y)1, x, y ∈ V.

(2) {ei1 · ... · eik : 1 ≤ i1 < ... < ik ≤ n, 0 ≤ k ≤ n} is a basis of
Cl(V, g). Thus, dimCl(V, g) = 2n.
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From Physics to Mathematics

Theorem (Representation of Clifford Algebra)

There exists a unique representation of smallest dimension of the
algebra ClC (Rn) on a complex vector space ∆n :

ClC (Rn) −→ End (∆n) , dim ∆n = 2[n/2].

∆n : space of (Dirac) spinors.

I Example. The representation of ClC2 := ClC(R2) is given by

ClC2 →M2(C)

1→ E, e1 → g1, e2 → g2, e1 · e2 → −iT.
where

E =

(
1 0
0 1

)
, g1 =

(
i 0
0 −i

)
, g2 =

(
0 i
i 0

)
, T =

(
0 −i
i 0

)
.
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From Mathematics

I The Spin(n) group is a two-fold covering of SO(n) and can be
realized in Cl (Rn),

Spin(n) = {x1 · . . . · x2l, xi ∈ Rn and |xi| = 1} .

I Every vector x ∈ Rn acts on ∆n by an endomorphism:

Rn ×∆n 3 (x, ψ) 7−→ x · ψ ∈ ∆n Clifford multiplication

µ : Rn ⊗∆n −→ ∆n.

I The Spin(n)-representation Rn ⊗∆n splits into

Rn ⊗∆n = ∆n ⊕ ker(µ)
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From Mathematics

I Idea: Attach a copy of ∆n to every point x of a Riemannian
manifold (M, g) :

Tangent bundle:

T (M) =
⋃
x∈M

TxM

Spinor bundle:

S (M) =
⋃
x∈M

∆n(x)

I Idea: Denote by F (M, g) the oriented frame bundle. M
admits a spin structure iff its SO(n)-principal bundle PSO(n)M
admits a reduction PSpin(n)M → PSO(n)M to the group
Spin(n)→ SO(n).
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From Mathematics

I Idea:

SM PSpin(n)Moo

TM //

::

F(M, g) // PSO(n)M

lift

OO

I Spinor bundle SM = PSpin(n)M ×µ ∆n.
I Section A section ψ ∈ Γ(SM) is locally given by

ψ|U = [s̃, σ],

where s̃ ∈ Γ(PSpin(n)M), U ⊂M , σ : U → ∆n.
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From Mathematics

The first Stiefel-Whitney class w1(M) ∈ H1(M,Z2) vanishes
if and only if M is orientable.

The second Stiefel-Whitney class w2(M) ∈ H2(M,Z2)
vanishes if and only if M admits a spin structure.

There is a non-canonical bijection

{[spin structures] } ↔ Hom(π1(M),Z2)↔ H1(M,Z2).

H, Sn(n ≥ 2) are spin manifolds with a unique spin structure.
S1 admits 2 different spin structures. Tn admits 2n different
spin structures.
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From Mathematics

The Clifford multiplication on SM is the fiberwise action
given by

µ : TM ⊗ SM → SM
X ⊗ ψ → X · ψ,

span

where X = [s̃, α], X · ψ := [s̃, α · σ], α · σ is the Clifford
multiplication on ∆n.

TM ∼= PSpin(n)M ×Ad Rn.
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From Mathematics

The lift from a section s ∈ ΓU (PSO(n)M) to s̃ ∈ ΓU (PSpin(n)M)

PSpin(n)M

η

��
U ⊂M

s̃
88

s // PSO(n)M

induces a connection 1-form on PSpin(n)M

TPSpin(n)M

η

��

ω̃ // spinn

Ad∗

��
TU ⊂ TM

s̃∗
77

s∗ // TPSO(n)M
ω // son
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From Mathematics

I Spinorial Covariant derivative Take an orthonormal basis
σ1, ..., σN of ∆n to get a local section {ψα}1≤α≤N by

ψα := [s̃, σα] ∈ ΓU (SM).

Then the spinorial covariant derivative is given locally by

∇ψα =
1

4

n∑
i,j=1

g(∇ei, ej)ei · ej · ψα.
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From Mathematics

I Dirac operator The Dirac operator is the composition of the
covariant derivative acting on sections of SM with the Clifford
multiplication

D := µ ◦ ∇.

Locally, we have

D : Γ(SM)
∇−→ Γ(T ∗M ⊗ SM)

µ−→ Γ(SM)

ψ −→
n∑
i=1

e∗i ⊗∇eiψ −→
n∑
i=1

ei · ∇eiψ
span

I Dirac operator is a first order differential operator which is
elliptic and formally self-adjoint.

19 / 59



Contents Introduction to Dirac operator Spectral Properties of the Dirac opeartor Variational Setting Applications: Limit Problem Applications: Spectrum Zero Problem

From Mathematics

I Example 1. Let M = Rn, SM = Rn × CN , then every spinor
field ψ ∈ Γ(SM) is in fact a map ψ : Rn → CN , and the Dirac
operator is given by

D =

n∑
i=1

ei · ∂i =

n∑
i=1

µ(ei)∂i,

where µ(ei) ∈MN (C) satisfies µ(ei)µ(ej) + µ(ej)µ(ei) = 2δijIN .
(This is in fact the Dirac matrices)
I Example 2. Let M = R2, (e1, e2) be the orthonormal basis of

R2. The complex volume element ωC := i[
n+1
2

]e1 · ... · en = ie1 · e2.
Then ∆2 = ∆+

2 ⊕∆−2
∼= spanC{e1, e2}, where

∆±2 =
1

2
(1± ωC) ·∆2

∼= spanC{1± e2}.
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From Mathematics

Then each spinor field ψ ∈ Γ(SM) is given by two complex
functions f, g : R2 → C, such that

ψ = f(1 + e2) + g(1− e2).

The Dirac operator becomes

Dψ = (e1 · ∂1 + e2 · ∂2) (f(1 + e2) + g(1− e2))

= (1 + e2) (i∂1 + ∂2) g + (1− e2) (i∂1 − ∂2) f

= 2i∂zg(1 + e2) + 2i∂z̄f(1− e2).

span

That is

D = 2i

(
0 ∂z
∂z̄ 0

)
in the basis {1 + e2, 1− e2} of ∆2. Hence the Dirac operator can
be considered as a generalization of the Cauchy-Riemann operator.
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Dirac operator and Laplace operator

I Dirac operator enjoys analogous properties to the
Laplace-Beltrami operator:

conformally covariant

self-adjoint

discrete eigenvalues of finite multiplicity

I Difference:

Dirac operator is a first order differential operator

Dirac operator acts on spinors (which are complex vectors)

the spectrum of Dirac operator accumulates both +∞ and
−∞
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Supplement to the Similarity

Case I. Consider Au = W (x)|u|p−2u, W ≥ 0.
(1) A positive defined.

I(u) =
1

2
‖u‖2 − 1

p

∫
Rn
W (x)|u|pdx,

has at least one nontrivial critical point.
(2) A strongly indefined.

I(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
− 1

p

∫
Rn
W (x)|u|pdx,

has at least one nontrivial critical point.
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Supplement to the Differences

Case II. Consider Au+W (x)|u|p−2u = 0, W ≥ 0.
(1) A poitive defined.

I(x) =
1

2
‖u‖2 +

1

p

∫
Rn

W (x)|u|pdx

has only trivial solution .
Proof. If u is a critical point of I, then

I(u)− 1

2
dI(u) · u = (

1

p
− 1

2
)

∫
W (x)|u|pdx ≤ 0.

This implies u = 0.
(2) A strongly indefined.

I(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+

1

p

∫
Rn

W (x)|u|pdx,

has at least one nontrivial critical point. Only need to consider

−I(u) =
1

2

(
‖u−‖2 − ‖u+‖2

)
− 1

p

∫
Rn

W (x)|u|pdx.
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From Many Aspects
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Case I. V (x) = 0

Recall Hω = −ic~α · ∇+mc2β + ω is well-defined on L2(R3,C4)
with domain D(Hω) = H1(R3,C4) and formal domain

D(Hω) = H
1
2 (R3,C4).

Proposition

σ(Hω) = σe(Hω) = R \ (−mc2 + ω,mc2 + ω).

Proof. Symbol of H0 is denoted by Ĥ0. By

σ(H0) = {λ ∈ C : ∃ξ ∈ Rn, s.t. det(Ĥ0(ξ)− λI) = 0},

det(Ĥ0(ξ)− λI) = (λ2 −m2c4 − |ξ|2)2.

⇒ σ(H0) = (−∞,−mc2] ∪ [mc2,∞)
⇒ σ(Hω) = (−∞,−mc2 + ω] ∪ [mc2 + ω,∞)
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Case II. Periodic Potential

For Hω = −ic~α · ∇+mc2β + V (x)β + ω, we assume

(Vp) V ∈ C1(R3, [0,∞)), V (x) is 1-periodic with respect to xk.

Proposition (Bartsch, Ding, 06, JDE)

σ(Hω) = σc(Hω) ⊂ R \ (−mc2 + ω,mc2 + ω), and
inf σ(H0) ∩ R+ ≤ mc2 + sup

x∈R3

V (x).
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Case III. Coercive Potential

For Hω = −ic~α · ∇+mc2β + V (x)β + ω, we assume

(Vs) V ∈ C1(R3,R), for any b > 0, meas(V b) <∞, where
V b := {x ∈ R3 : V (x) ≤ b}.

Proposition (Bartsch, Ding, 06, JDE)

σ(Hω) = σd(Hω) =
{
ω ± µ1/2

n : n ∈ N
}

, where

0 < µ1 ≤ · · · ≤ µn →∞.
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Case IV. Coulomb-type Potential

Set H0 = −ic~α · ∇+mc2β + V (x), we assume
(Vb) lim

|x|→∞
V (x) = 0, − ν

|x| −K1 ≤ V ≤ K2 = sup
x∈R3

V (x),

where K1,K2 ≥ 0, K1 +K2 −mc2 <
√
m2c4 −mc2ν2,

ν ∈ (0,
√
mc2), K1,K2 ∈ R.

Proposition (Esteban, Lewin, Séré, 21, PLMS)

λk(H0) = inf
Y ⊂ C∞0 (R3,C2)

dimY = k

sup
ϕ∈Y \{0}

λT (H0, ϕ), where

λT (H0, ϕ) := sup
ψ = (ϕ, χ)T

χ ∈ C∞0 (R3,C2)

(H0ψ,ψ)

(ψ,ψ)
∈ (K2 −mc2,∞).
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Case V. Coulomb-type Potential

(V ′b ) lim
|x|→∞

V (x) = 0, V ∈ C(R3 \ P,R), where

P = {x+
i }Ii=1 ∪ {x

−
j }Jj=1. And

lim
x→x+i

V (x) = +∞, lim
x→x+i

V (x)|x− x+
i | ≤ vi,

lim
x→x−j

V (x) = −∞, lim
x→x−j

V (x)|x− x−j | ≤ vj ,

where vi, vj ∈ (0, 1).

Proposition (Dolbeault, Esteban, Séré, 06, JEMS)

(i) σe(A) = (−∞,−mc2] ∪ [mc2,∞).
(ii) σ(A) = (−∞,−mc2] ∪ {λ±k : k ≥ 1} ∪ [mc2,∞).

31 / 59



Contents Introduction to Dirac operator Spectral Properties of the Dirac opeartor Variational Setting Applications: Limit Problem Applications: Spectrum Zero Problem

1 Introduction to Dirac operator

2 Spectral Properties of the Dirac opeartor

3 Variational Setting

4 Applications: Limit Problem

5 Applications: Spectrum Zero Problem

32 / 59



Contents Introduction to Dirac operator Spectral Properties of the Dirac opeartor Variational Setting Applications: Limit Problem Applications: Spectrum Zero Problem

Working Space

I Free Dirac operator D = −ic~α · ∇+mc2β.
I The orthogonal decomposition of L2(R3,C4)

L2 = L+ ⊕ L−, u = u+ + u−,

with D is positive (or negative) definite on L+ (or L−).
I Working Space E is the completion of D(|D|1/2) under the
inner product

(u, v) := <(|D|1/2u, |D|1/2v)L2 .

I The orthogonal decomposition of E ∼= H1/2(R3,C4) :

E = E+ ⊕ E−,

where E± = E ∩ L±.
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Working Space

In the Fourier domain ξ = (ξ1, ξ2, ξ3), we have

D̂(ξ) = c~α · ξ +mc2β =

(
mc2I2 c~σ · ξ
c~σ · ξ −mc2I2

)
.

The unitary transformation U(ξ) which diagonalize D̂(ξ) is given
explicitly by

U(ξ) =
(mc2 + λ)I4 + βcα · ξ√

2λ(mc2 + λ)
= Υ+I4 + Υ−β

α · ξ
|ξ|

,

where Υ± =
√

1
2(1±mc2/λ). Then we have

U(ξ)D̂(ξ)U−1(ξ) = λβ.
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Working Space

I The orthogonal projections P± on E with kernel E∓ are
given by

P±u(x) =
1

2

(
I ± |D|−1D

)
u(x).

P̂±u(ξ) =
1

2
U−1(ξ)(I4 ± β)U(ξ)û(ξ).

Proposition (Dong, Ding, Guo, 23, JDE)

Let E±p := E± ∩ Lp for p ∈ (1,∞). Then there holds

Lp = clpE
+
p ⊕ clpE

−
p ,

where clp denotes the closure with respect to the norm in Lp.
That is, there exists τp > 0 for every p ∈ (1,∞) such that

τp‖u±‖Lp ≤ ‖u‖Lp , ∀u ∈ E ∩ Lp.
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Back to Physics: Lagrangian Formalism

I Nonlinear Dirac Model One of its general forms is

ic~γµ∂µψ −mc2ψ −Gψ̄ + ∂µ(G∂µψ̄) = 0,

ILagrangian density

L = ic~ψ̄γµ∂µψ −mc2ψ̄ψ −G(ψ, ψ̄, ∂µψ, ∂µψ̄).

ISolitary wave solutions ψ(t, x) = e−iωtu(x).
IStationary nonlinear Dirac equations

−ic~α · ∇u+mc2βu+ V u− ωu = Fu(u).

IDirac operator

Hω := −ic~α · ∇+mc2β + V − ω
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Three Physical Model

I Dirac-Slater Model The one-particle Dirac-Slater equation
becomes

−ic~α · ∇ψ +mc2βψ + Vcψ − Cex|ψ|2/3ψ = ωψ,

where Cex = 3CKS
(

3
4π

)1/3
, ψ : R3 → C4.

I Dirac-Soler Model The one-particle Dirac-Soler equation
becomes

−ic~α · ∇ψ +mc2βψ − g(ψψ)γ0ψ = ωψ,

where ψ : R3 → C4.
I Massive Thirring Model(

−iγ5∂x +mγ0
)
u+ gc

(
−|u|2u+

(
u†γ5u

)
γ5u
)

= ωu,

where u : R→ C2.
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Nonrelativistic limit

Physical Meaning.

Case I: Noncompactness Potentials.

Case II: Compactness Potentials.

Case III: Normalized Solutions.

Applications I: Nonexistence Results.

Applications II: Nonlinear Schrödinger Equations.
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Nonrelativistic limit I (Noncompactness)

Consider the following nonlinear Dirac equation:

− icα · ∇ψ +mc2βψ − ωψ = |ψ|p−2ψ, (1)

where ψ : R3 → C4.
Nonlinear Schrödinger equations:{

−∆u1 + νu1 = 2m|u|p−2u1,

−∆u2 + νu2 = 2m|u|p−2u2,
(2)

where u = (u1, u2)T : R3 → C2, ν > 0 is a constant.
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Without Potentials

Theorem (Y. Ding, X. Dong, Q. Guo, CVPDE, 2021)

Let m, ν > 0, p ∈ (2, 5/2]. Assume {cn}, {ωn} satisfy

0 < cn, ωn → +∞,

0 < ωn < mc2
n,

mc2
n − ωn →

ν

m
,

where n→∞. If {ψn = (un, vn)T } is a ground state of NDE (1)
with ωn, cn, then there is a m0, such that for m ≤ m0,

un → u and vn → 0 in H1(R3,C2),

n→∞, where u : R3 → C2 is a wave function of NSE (2) with
frequency ν.
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Nonrelativistic limit II (Assumptions on Potentials)

(VW1) V (x),W (x) > 0 for all x ∈ R3, and V,W ∈ L∞
(
R3,R

)
.

(VW2) If (Aj) ⊂ R3 is a sequence of Borel sets such that its
Lebesgue measure |Aj | ≤ R, for all j ∈ N and some R > 0, then

lim
r→+∞

∫
Aj∩Bcr(0)

W (x) = 0, uniformly in j ∈ N.

Furthermore, one of the below conditions occurs

(VW3) W
V ∈ L

∞ (R3,R
)
.

(VW4) There exists q ∈ (2, 3) such that

W (x)

V (x)3−q → 0 as |x| → +∞.
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Nonrelativistic limit II (Compactness)

Consider the following nonlinear Dirac equation:

− icα · ∇ψ +mc2βψ − ωψ + V (x)ψ = W (x)|ψ|p−2ψ, (3)

where ψ : R3 → C4.
A coupled system of nonlinear Schrödinger equations:{

−∆u1 + 2νu1 + 2mV (x)u1 = 2mW (x)|u|p−2u1,

−∆u2 + 2νu2 + 2mV (x)u2 = 2mW (x)|u|p−2u2,
(4)

where u = (u1, u2)T : R3 → C2, ν > 0 is a constant.
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With Potentials

Theorem (Dong, Ding, Guo, JDE, 2023)

Let m, ν > 0, p ∈ (2, 8/3].Assume {cn}, {ωn} satisfy

0 < cn, ωn → +∞,

0 < ωn < mc2
n,

mc2
n − ωn →

ν

m
,

where n→∞. Under the hypothesis (VW1)− (VW2), (VW3) or
(VW4), and ‖V ‖∞ < inf(mc2

n − ωn), if {ψn = (un, vn)T } is a
sequence of ground states for NDE (3). Then

un → u and vn → 0 in H1(R3,C2),

as n→∞, where u : R3 → C2 is a solution for the NSE (4).
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Nonrelativistic limit III (Normalized Solutions)

Consider the following constraint Dirac equation −icα · ∇ψ +mc2βψ − ωψ = f(x, |ψ|)ψ,∫
R3

|ψ|2dx = 1,
(NDE)c

where f(x, |ψ|) = Γ ∗ (K|ψ|κ)K|ψ|κ−2 − P |ψ|s−2.
Nonlinear Schrödinger equations with L2-constraint: −∆u+ νu = 2mP |u|s−2u+ 2mΓ ∗ (K|u|κ)K|u|κ−2u,∫

R3

|u|2dx = 1,

(NSE)
where u = (u1, u2)T : R3 → C2, ν > 0 is a constant.
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Nonrelativistic limit III (Assumptions on Nonlinearities)

Assumptions on nonlinearities
(K1) K ∈ C1(R3, (0,+∞)) and lim

|x|→∞
K(x) = 0.

(P1) P ∈ C1(R3, (0,+∞)) and lim
|x|→∞

P (x) = 0.

(P2) There exist a constant C > 0, a number µ ∈
(
0, 10−3s

2

)
such

that for small ε > 0, and all x ∈ R3, it holds that

P (x) ≥ CεµP (εx).

(Γ1) Γ ∈ L6/(14−6κ)
w (R3) ∩ C(R3\{0}, (0,+∞)).

Model Nonlinearities
(i) K(x) = e−a|x|, where a > 0.
(ii) P (x) = 1

1+|x|µ , where µ is given in assumption (P2).

(iii) Γ(x) = 1
|x|τ , where τ ∈ (0, 7− 3κ).
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Theorem (Chen, Ding, Guo, Wang, 2023, preprint)

Set κ ∈ [2, 7/3), s ∈ (2, 8/3]. If assumptions (K1), (P1), (P2) and
(Γ1) hold, then for a given c > 0 large enough, there exists
ωc ∈ (0,mc2) and a function uc ∈ H1(R3,C4), such that (ωc, uc)
is a normalized solution of (NDE)c. In addition, we have

−∞ < lim inf
c→∞

(ωc −mc2) 6 lim sup
c→∞

(ωc −mc2) < 0.

Theorem (Chen, Ding, Guo, Wang, 2023, preprint)

There is a positive constant ν > 0, and a sequence
(ωcn , ψcn = (un, vn)T ) which is a solution of (NDE)cn , such that

un → u, vn → 0 in H1(R3,C2),

where u : R3 → C2 is a ground state solution of (NSE).
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Applications I: Nonexistence Results.

Questions. What if two components of solitary wave solution
equal zero?
Fourier transform+Dirac matrices ⇒ only trivial solutions ⇒
Nonexistence of solutions of Majorana-type (i.e. u+ = u−).
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Applications I: Nonexistence Results.

(F ) Given f ∈ C
(
H1(R3,C4),R

)
. For any r > 0,

f(u) 6= 0, ∀u ∈ S0
r ,

where S0
r :=

{
u = (u1, u2, 0, 0) ∈ H1(R3,C4) : ‖u‖H1 = r

}
.

Theorem

Let m, ν > 0, p ∈ (2, 8/3]. Assume that ‖V ‖∞ < ν/(2m). Under
the hypothesis (VW1)− (VW2), (VW3) or (VW4) and (F ), there
exists c0 > 2m/ν, such that for any

c > c0, ε ∈ (0, 1/c0), ω ∈ (mc2 − ε− ν/m,mc2 + ε− ν/m),

(NDE)c possesses no ground state u with f(u) = 0.

|u1|a + |u2|b = |u3|c + |u4|d or ‖u3‖eL2 + ‖u4‖fL2 = γ.
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Applications II: NSE.

Theorem

Set κ ∈ [2, 7/3), s ∈ (2, 8/3]. If assumptions (K1), (P1), (P2) and
(Γ1) hold, then there is (ν, u) ∈ (0,∞)×H1(R3,C2), solves

 −∆u+ νu = 2mP |u|s−2u+ 2mΓ ∗ (K|u|κ)K|u|κ−2u,∫
R3

|u|2dx = 1,
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Sketch of the Proof

Key Ingredient 1: Existence of ground state solutions in H1 for
any m, c > 0 and ω ∈ (−mc2,mc2).

inf
ϕ∈M

Φ(φ) = inf
w∈E+

sup
φ∈E−⊕Rw

Φ(φ),

M :=
{
u ∈ E\E− : Φ′(u) · u = 0 and Φ′(u) · ϕ = 0, ∀ ϕ ∈ E−

}
.

Key Ingredient 2: Uniform Boundedness of Solutions.
Step 1. {un} is bounded in Lp. (Taking test function)
Step 2. {un} is bounded in L2. (Variational equality)
Step 3. {un} is bounded in H1. (p ∈ (2, 8/3])
Key Ingredient 3: ‖vn‖H1 = O( 1

cn
), inf

n
‖un‖H1 ≥ ρ > 0.

Key Ingredient 4: New functional Ψ. {un} is a (PS)-sequence for
Ψ + Compactness (Compactness Potential/ Small Mass)
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Spectrum Zero Problem

I The Spectrum Zero Problem: the existence of nontrivial
solutions u ∈ X to the equation

Au = N(u),

where X is a Banach space, A is a self-adjoint linear operator and
N is a bounded nonlinear operator.
I Two cases: zero belonging to the interior of the essential
spectrum and zero belonging to the boundary.
I Simplify the model by setting c = ~ = 1, then the stationary
nonlinear Dirac equations becomes

−iα · ∇u+mβu− ωu = Fu(x, u).

I The linear operator of this problem Hω = −iα · ∇+mβ − ω.
I The spectrum of Hω on L2:

σ(Hω) = (−∞,−m− ω] ∪ [m− ω,∞).
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Spectrum Zero Problem of Type I

I Set F (u) = F̂ (u+, u−), p ∈ (2, 3), and assume that

(F1) F̂ ∈ C1
(
C4 × C4,R

)
.

(F2) There is a1, a2 > 0, such that for any s, t ∈ C4, we have

a1

(
|s|p + |t|2

)
≤ F̂ (s, t) ≤ a2(|s|p + |t|p + |t|2).

(F3) There is b1, b2 > 0, such that for any s, t ∈ C4, we have

2F̂ (s, t)+b1|s|p ≤ 〈∂sF̂ , s〉+〈∂tF̂ , t〉 ≤ 3F̂ (s, t)−b2
(
|s|p + |t|2

)
.

(F4) There is c1 > 0, d2 ≥ d1 > 0, such that for any s, t ∈ C4, we
have

〈∂sF̂ , s〉 ≤ c1|s|p + d1|t|2, 〈∂tF̂ , t〉 ≥ d2

(
|t|2 − |s|p

)
.
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Spectrum Zero Problem of Type I

Theorem (Guo, Ke, Ruf, 23, preprint)

Let (F1)-(F4) be satisfied, consider the following nonlinear Dirac
equation

−iα · ∇u+mβu− ωu = Fu(u).

(1) If ω ∈ [m,∞), then there are only trivial solution u = 0 in
H1(R3,C4).

(2) If ω ∈ [−m,m), then there are at least one nontrivial solution
u in H1(R3,C4).
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Spectrum Zero Problem of Type I

I Sketch of the Proof.
Step 1. Establish Pohozaev’s identity and variational identity to
solve the case ω ≥ m.
Step 2. Set a variational problem when ω ∈ (−m,m).
Step 3. Check the topological properties and geometric structure
of the functional Φ on E0.
Step 4. Use the critical point theorem to obtain a (C)c-sequence.
Step 5. Use the Lions’s concentration compactness argument to
get a new sequence after translation.
Step 6. Show the limit point is the critical point.
Step 7. Peturbation of the functional.
Step 8. Show the uniformly boundedness.
Step 9. Construct a sequence via Step 6.
Step 10. Show the limit point is the critical point when ω = −m.
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Spectrum Zero Problem of Type II

I Assumptions on the nonlinearity F :

(F1) F ∈ C1
(
R3 × C4,R

)
is 1-periodic in xi, i = 1, 2, 3.

(F2) There are constants a1 > 0 and 2 < γ ≤ µ < 3 such that

a1|u|µ ≤ γF (x, u) ≤ Fu(x, u) · u, for all x ∈ R3, u ∈ R.

(F3) There are constants a2 > 0 and 2 < p ≤ q < 3 such that

|Fu(x, u)| ≤ a2

(
|u|p−1 + |u|q−1

)
, for all x ∈ R3, u ∈ R.

Theorem (Dong, Ding, Guo, 24, St. Petersberg Math. J.)

Suppose (F1)− (F3) hold. If ω = −m, then nonlinear Dirac
equation has a nontrivial (weak) solution u ∈ H1

loc

(
R3,C4

)
.

Moreover, u lies in Lt
(
R3,C4

)
for µ ≤ t ≤ 3.

57 / 59



Contents Introduction to Dirac operator Spectral Properties of the Dirac opeartor Variational Setting Applications: Limit Problem Applications: Spectrum Zero Problem

Spectrum Zero Problem

I New Ingredients:

Type I.
1. Pohozaev’s identity of nonlinear Dirac equations.
2. Critical Point Theorem of strongly indefinite functionals.
3. Perturbation of the functional.

Type II.
1. Choose a proper working space that is neither too big nor too small.
2. Establish a new embedding theorem for the new working space.

3. Construct a new sequence from the modified functional.
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Thanks for your attention !
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