Toric spaces and face enumeration on simplicial manifolds

Feifei Fan

South China Normal University

May 5, 2023
Great Bay University, Dongguan

- Motivation: the g-conjecture for simplicial spheres and the generalized g-conjecture for simplicial manifolds in the theory of face enumeration.
- Goal: to study these enumeration problems from the point of view of toric topology, and to give topological expositions for many fundmental results in algebraic combinatorics.

How the g-conjecture came about

This conjecture comes from the following naive question:

Question

What are the possible face numbers of triangulations of spheres?

- There is only one zero-dimensional sphere and it consists of two disjoint points.
- The triangulations of 1 -spheres are boundaries of polygons, having n vertices and n edges for $n \geq 3$.
- The 2 -spheres with n vertices have $3 n-6$ edges and $2 n-4$ faces for any $n \geq 4$. This follows from Euler's formula.

Euler's fomula

Let V, E, F are the numbers of vertices, edges and faces of a polytope respectively. Then

$$
V-E+F=2 .
$$

f-vectors

Let K be a simplicial complex of dimension $d-1$. Denote by $f_{i}(K)$ the number of i-dimensional faces of K. The integer sequence $\left(f_{0}, f_{1}, \ldots, f_{d-1}\right)$ is known as the f-vector of K.

Euler-Poincaré formula

$f_{0}-f_{1}+f_{2}+\cdots+(-1)^{d-1} f_{d-1}=e(K)$ is a topological invariant called the Euler number of K

For spheres, we have

$$
e\left(S^{d-1}\right)=1-(-1)^{d} .
$$

For simplicial 2 -spheres, there is also a linear relation:

$$
2 f_{1}=3 f_{2}
$$

h-vectors \& Dehn-Sommerville relations

Question

What are the relations between the face numbers of simplicial spheres in higher dimensions?

The h-vector of a d-1-dimensional simplicial complex K is the integer vector $\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ defined from the equation

$$
h_{0} t^{d}+\cdots+h_{d-1} t+h_{d}=(t-1)^{d}+f_{0}(t-1)^{d-1}+\cdots+f_{d-1} .
$$

Here is a trick, like Pascal's triangle (using subtractions instead of additions), can be used to compute the h-vector.

Figure: Octahedron with $f=(6,12,8)$

$$
\begin{array}{llllll}
& & & & 1 & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
& & & & & \\
\\
& & & & & \\
\\
& & & & & \\
& & & & & \\
\hline
\end{array}
$$

Figure: Icosahedron with $f=(12,30,20)$

Dehn-Sommerville relations

If K is a triangulation of S^{d-1}, then $h_{i}=h_{d-i}$ for $0 \leq i \leq d$.

- These equations were found by Dehn and Sommerville for simplicial polytopes, and were extended to simplicial spheres, even to simplicial homology spheres by Klee in 1964.
- The equation $1=h_{0}=h_{d}$ is equivalent to the Euler-Poincaré formula

$$
f_{0}-f_{1}+f_{2}+\cdots+(-1)^{d-1} f_{d-1}=1-(-1)^{d} .
$$

- (Klee) The Dehn-Sommerville relations are the most general linear equations satisfied by the face numbers of all simplicial spheres.
- Since for triangulations of S^{d-1} the number of Dehn-Sommerville equations is $\left[\frac{d+1}{2}\right]$, the number of vertices doesn't determine all the face numbers for simplicial spheres of $\operatorname{dim} \geq 3$.

Question

Given any sequence ($h_{0}=1, h_{1}, \ldots, h_{d}$) of positive integers such that $h_{i}=h_{d-i}$, is there always a simplicial sphere having this sequence as its h-vector?

- The answer is 'no', because there are some other inequality relations between the h-numbers of triangulated spheres.

The Upper Bound Conjecture

Upper Bound Conjecture

For any triangulated ($d-1$)-dimensional sphere K with m vertices, the h-vector satisfies the inequalities

$$
h_{i} \leq\binom{ m-d+i-1}{i} .
$$

- In 1975, Stanley proved the UBC by showing that h-vectors of triangulated spheres are M-sequences.

LBC \& GLBC

Lower Bound Conjecture

Let K be a simplicial $(d-1)$-sphere of with $d \geq 3$. Then $f_{1} \geq d f_{0}-\binom{d+1}{2}$, or in other words, $h_{2} \geq h_{1}$.

- LBC was proved by Barnette in 1970 for simplicial polytopes, and extended to the most general case of homology manifolds by Kalai in 1987.

Generalized Lower Bound Conjecture

Let K be a simplicial ($d-1$)-sphere with $d \geq 6$. Then

$$
h_{0} \leq h_{1} \leq h_{2} \leq \cdots \leq h_{[d / 2]} .
$$

- GLBC is implied by the g-conjecture.

Macaulay condition

For any two positive integers a and i there is a unique way to write

$$
a=\binom{a_{i}}{i}+\binom{a_{i-1}}{i-1}+\cdots+\binom{a_{j}}{j}
$$

with $a_{i}>a_{i-1}>\cdots>a_{j} \geq j \geq 1$. Define the i th pseudopower of a as

$$
a^{\langle i\rangle}=\binom{a_{i}+1}{i+1}+\binom{a_{i-1}+1}{i}+\cdots+\binom{a_{j}+1}{j+1} .
$$

A sequence of nonnegative integers $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ satisfies $a_{0}=1$ and $a_{i+1} \leq a_{i}^{\langle i\rangle}$ for $i \geq 1$ is called an M-sequence.

Theorem (Macaulay, 1927)

A sequence $\left(a_{0}, a_{1}, a_{2} \ldots\right)$ of nonnegative integers is an M-sequence if and only if there exists a connected commutative graded \mathbf{k}-algebra R over a field \mathbf{k} such that R is generated by degree-one elements and $\operatorname{dim}_{\mathbf{k}} R_{i}=a_{i}$ for all i.

The g-conjecture

g-vector

For a simplicial compelx K of dimension $d-1$, the g-vector $\left(g_{0}, g_{1}, \ldots, g_{[d / 2]}\right)$ of K is defined by $g_{0}=h_{0}$ and $g_{i}=h_{i}-h_{i-1}$ for $i=1, \ldots,[d / 2]$.

McMullen's g-conjecture (1971)

An integer vector $\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ is the h-vector of the boundary sphere of a simplicial d-polytope if and only if
(i) $h_{i}=h_{d-i}$ for $i=0,1, \ldots, d$;
(ii) the g-vector is a M-sequence.

- Less than ten years later McMullen's g-conjecture was proved. Now it is known as the g-Theorem.
- Billera and Lee (1981) proved the sufficiency of McMullen's conditions. They established that for every M-vector there was a simplicial polytope with the given g-vector.
- Stanley (1980) gave a topological proof of the necessity of McMullen's conditions. His proof used deep results from algebraic geometry, especially the theory of toric varieties.
- In 1993, McMullen gave another more elementary but complicated proof of the necessity part of g-theorem.
- The idea behind both Stanley's and McMullen's proofs was to find an algebra whose Hilbert function equals the g-vector of the polytope.

Face rings and its artinian reduction

Let K be a simplicial complex on $[m]$. The face ring or Stanley-Reisner ring of K over a field \mathbf{k} is the quotient ring

$$
\mathbf{k}[K]:=\mathbf{k}\left[x_{1}, \ldots, x_{m}\right] / I_{K} .
$$

Here $I_{K}:=\left(x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}:\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \notin K\right)$.
A set $\Theta=\left\{\theta_{1}, \ldots, \theta_{d}\right\}$ of $d=\operatorname{dim} K+1$ linear forms in $\mathbf{k}[K]$ is called an linear system of parameters, or Isop, for $\mathbf{k}[K]$, if $\operatorname{dim}_{\mathbf{k}}(\mathbf{k}[K] / \Theta)<\infty$. In this case, $\mathbf{k}[K] / \Theta$ is also called an artinian reduction of $\mathbf{k}[K]$.

Cohen-Macaulay complexes

The face ring $\mathbf{k}[K]$ is a Cohen-Macaulay ring if for any Isop $\Theta, \mathbf{k}[\Delta] / \Theta$ is a free $\mathbf{k}\left[\theta_{1}, \cdots, \theta_{d}\right]$ module. In this case, K is called a Cohen-Macaulay complex over \mathbf{k}.

Theorem (Stanley, 1975)

Let K be a $(d-1)$-dimensional Cohen-Macaulay complex and let $\Theta=\left\{\theta_{1}, \ldots, \theta_{d}\right\}$ be an Isop for $\mathbf{k}[K]$. Then

$$
\operatorname{dim}_{\mathbf{k}}(\mathbf{k}[K] / \Theta)_{i}=h_{i}(K), \text { for all } 0 \leq i \leq d
$$

Theorem (Reisner, 1976)

K is Cohen-Macaulay (over \mathbf{k}) if and only if for every face $\sigma \in K$ (including $\sigma=\varnothing$) and $i<\operatorname{dim} \mathrm{lk}_{\sigma} K$, we have $\widetilde{H}_{i}\left(\mathrm{lk}_{\sigma} K ; \mathbf{k}\right)=0$.

- Simplicial spheres are Cohen-Macaulay.

Toric varieties

Given a rational simplicial fan $\Sigma \subset \mathbb{R}^{d}$. Each ray of Σ is generated by a primitive vector $\boldsymbol{\lambda}_{i}=\left(\lambda_{1 i}, \ldots, \lambda_{d i}\right) \in \mathbb{Z}^{d}$. Let K_{Σ} to be the underlying simplicial complex of Σ. Then the vectors $\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}$ define an Isop for $\mathbb{Q}\left[K_{\Sigma}\right]:$

$$
\Theta=\left\{\theta_{i}=\lambda_{i 1} x_{1}+\cdots+\lambda_{i m} x_{m}\right\}_{i=1}^{d} .
$$

Theorem (Danilov, 1978)

Let Σ be a rational complete simplicial fan, and let X_{Σ} be the corresponding toric variety. Then there is a ring isomorphism

$$
H^{*}\left(X_{\Sigma} ; \mathbb{Q}\right) \cong \mathbb{Q}\left[K_{\Sigma}\right] / \Theta, \quad H^{2 i}\left(X_{\Sigma} ; \mathbb{Q}\right) \cong\left(\mathbb{Q}\left[K_{\Sigma}\right] / \Theta\right)_{i} .
$$

In particular, if Σ is regular, then the above isomorphism also holds for integeral cohomology.

Hard Lefschetz Theorem

Hard Lefschetz Theorem

Let (M, ω) be a compact Kähler manifold of complex dimensinon n with a Kähler form $\omega \in H^{2}(M ; \mathbb{C})$. For each $k \leq n$ the multiplication map

$$
\cdot \omega^{k}: H^{n-k}(M ; \mathbb{C}) \rightarrow H^{n+k}(M ; \mathbb{C})
$$

is an isomorphism.

- The Hard Lefschetz Theorem also holds for Kähler orbifolds by using intersection cohomology theory.
- Projective manifolds or orbifolds $M \subset \mathbb{P}^{n}$ are Kähler.
- If Σ is a simplicial fan corresponding to a simplicial polytope, then the toric variety X_{Σ} is a projective orbifold. Consequently the algebra $H^{*}\left(X_{\Sigma}\right) /\langle\omega\rangle$ will have $g\left(K_{\Sigma}\right)$ as its Hilbert function.

SLP \& Algebraic g-conjecture

We say a simplicial $(d-1)$-sphere K has the strong Lefschetz property if there exists an Isop Θ for $\mathbf{k}[K]$ and a linear form ω such that the multiplication map

$$
\cdot \omega^{d-2 i}:(\mathbf{k}[K] / \Theta)_{i} \rightarrow(\mathbf{k}[K] / \Theta)_{d-i}
$$

is an isomorphism for all $i \leq d / 2$.

Algebraic g-conjecture

Every simplicial sphere has the strong Lefschetz property.

- In 2018, Karim Adiprasito announced a proof of the algebraic g-conjecture in the paper:
Combinatorial Lefschetz theorems beyond positivity, arXiv:1812.10454.

Weak Lefschetz property

In fact, to prove the g-conjecture, it is enough to prove the following weaker property holds.

We say a simplicial ($d-1$)-sphere K has the weak Lefschetz property if there is an Isop Θ and a linear form ω such that the multiplication map $\cdot \omega:(\mathbf{k}[K] / \Theta)_{i} \rightarrow(\mathbf{k}[K] / \Theta)_{i+1}$ has maximal rank, i.e. is injective or surjective, for all i.

Simple polyhedral complexes

Given a pure simplicial complex K on $[m$], there is a dual simple polyhedral complex P_{K}. As a polyhedron, P_{K} is the cone over the barycentric subdivision K^{\prime} of K.

- For each i-face $\sigma \in K$, let F_{σ} be the geometric realization of the poset

$$
\{\tau \in K: \tau \geq \sigma\} .
$$

Then F_{σ} is a face of P_{K} of codimension $i+1$. In particular, if v is a vertex of $K, F_{v}=\operatorname{st}_{v} K^{\prime}$ is a facet of P_{K}.

- For each point $x \in P_{K}$, let $F(x)$ be the unique face of P_{K} which contains x in its relative interior.

$$
P_{k}=
$$

Figure: F_{1}, F_{2}, F_{3} are the three facets of P_{K}

Toric spaces by D-J construction

Suppose $\operatorname{dim} K=d-1$ and the vertex set of K is $[m]$. A map

$$
\Lambda:[m] \rightarrow \mathbb{Z}^{d}, i \mapsto \boldsymbol{\lambda}_{\boldsymbol{i}}=\left(\lambda_{1 i}, \ldots, \lambda_{d i}\right)^{T}
$$

is called a characteristic function if $\Theta=\left\{\theta_{i}=\lambda_{i 1} x_{1}+\cdots+\lambda_{i m} x_{m}\right\}_{i=1}^{d}$ is an Isop for $\mathbb{Q}[K]$.

For the pair (K, Λ), there is a toric space defined by

$$
M(K, \Lambda)=P_{K} \times T^{d} / \sim
$$

$(x, g) \sim\left(x^{\prime}, g^{\prime}\right)$ if and only if $x=x^{\prime}$ and $g^{-1} g^{\prime} \in G_{F(x)}$. If $F(x)=F_{\sigma}$ for some $\sigma=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}, G_{F(x)} \subset T^{d}$ is the subtorus corresponding to the sublattice spanded by $\left\{\boldsymbol{\lambda}_{\boldsymbol{i}_{1}}, \boldsymbol{\lambda}_{\boldsymbol{i}_{2}}, \ldots, \boldsymbol{\lambda}_{\boldsymbol{i}_{k}}\right\}$.

Cohomology of $M(K, \Lambda)$

Theorem (Davis-Januszkiewicz, 1991)

If K is Cohen-Macaulay over \mathbb{Z} and Λ gives a integral Isop Θ for $\mathbb{Z}[K]$ (i.e. the characteristic function is regular), then

$$
H^{*}(M(K, \Lambda) ; \mathbb{Z}) \cong \mathbb{Z}[K] / \Theta
$$

Theorem (F., 2020)

If K is Cohen-Macaulay over \mathbb{Q} and Λ gives an Isop Θ for $\mathbb{Q}[K]$, then we have a ring isomorphism

$$
H^{*}(M(K, \Lambda) ; \mathbb{Q}) \cong \mathbb{Q}[K] / \Theta
$$

Moment-angel complexes

Let K be a simplicial complex on $[m]$. For each face $\sigma \in K$, let

$$
D(\sigma)=\prod_{i=1}^{m} Y_{i}, \quad \text { where } Y_{i}= \begin{cases}D^{2} & \text { if } i \in \sigma, \\ S^{1} \text { if } & i \notin \sigma .\end{cases}
$$

The space $\mathcal{Z}_{K}=\bigcup_{\sigma \in K} D(\sigma)$ is known as the moment-angle complex corresponding to K.

- \mathcal{Z}_{K} is a topological manifold (resp. k-homology manifod) if and only if K is a \mathbb{Z}-homology sphere (resp. \mathbf{k}-homology sphere).

A simplicial complex K is a \mathbf{k}-homology d-manifold if

$$
H_{*}\left(\mathrm{lk}_{\sigma} K ; \mathbf{k}\right)=H_{*}\left(S^{d-|\sigma|} ; \mathbf{k}\right) \quad \text { for all } \varnothing \neq \sigma \in K
$$

K is a \mathbf{k}-homology sphere if it is a \mathbf{k}-homology manifold with the same k-homology as S^{d}.

- Usually, the terminology "homology sphere" means a manifold having the homology of a sphere. Here we take it in the most relaxed sense.

Quotient constructions of $M(K, \Lambda)$

The characteristic function defines a map of lattices: $\Lambda: \mathbb{Z}^{m} \rightarrow \mathbb{Z}^{d}$, which can be extended to a exact sequence

$$
0 \rightarrow \mathbb{Z}^{m-d} \rightarrow \mathbb{Z}^{m} \xrightarrow{\Lambda} \mathbb{Z}^{d} \rightarrow G \rightarrow 0
$$

such that G is a finite group.
It can be shown that Λ induces an epimorphism of tori $\exp \Lambda: T^{m} \rightarrow T^{d}$ with kernel $\mathcal{K}_{\Lambda}=T^{m-d} \times G$.

The group $\mathcal{K}_{\Lambda}=T^{m-d} \times G$ acts almost freely and properly on \mathcal{Z}_{K}, and there is a T^{d}-equaviriant homeomorphism

$$
\mathcal{Z}_{K} / \mathcal{K}_{\Lambda} \cong M(K, \Lambda) .
$$

If K is a rational homology $(d-1)$-sphere, M_{K} is a closed, orientable, rational homology $2 d$-manifold, called a rational toric manifold.

Toric submanifolds of M_{K}

Let $\sigma \in K$ be a $(k-1)$-face, and let \mathcal{S}_{σ} be the vertex set of $\mathrm{st}_{\sigma} K$. Then the T^{d}-subspace of M_{K} :

$$
M_{\sigma}=\left(\mathcal{Z}_{\mathrm{st}_{\sigma} K} \times T^{m-\left|\mathcal{S}_{\sigma}\right|}\right) / \mathcal{K}_{\Lambda} \subset M_{K}
$$

is an orientable, rational $D^{2 k}$-fibration, and the zero section N_{σ} is a rational toric $(2 d-2 k)$-manifold.

- Especially, if $i \in[m]$ is a vertex, then N_{i} is a divisor in the case of toric varieties.

Poincaré duality

Lemma (Poincaré duality)

If K is a rational homology $(d-1)$-sphere, then the map defined by

$$
H^{2 j}\left(M_{K} ; \mathbb{Q}\right) \xrightarrow{\left[M_{K}\right]} H_{2 d-2 j}\left(M_{K} ; \mathbb{Q}\right)
$$

is an isomorphism for all $j \leq d$. Moreover, for any $(k-1)$-face $\sigma=\left\{i_{1}, \ldots, i_{k}\right\} \in K$, we have

$$
\left[M_{K}\right] \frown \mathbf{x}_{\sigma}=\left[N_{\sigma}\right], \text { where } \mathbf{x}_{\sigma}=x_{i_{1}} \cdots x_{i_{k}} .
$$

$\left[N_{\sigma}\right] \in H_{2 d-2 k}\left(N_{\sigma} ; \mathbb{Q}\right)$ is the fundamental class of N_{σ}.

Corollary

$\mathbb{Q}[K] / \Theta$ is a Poincaré duality algebra.

Injection principles

Theorem (F., 2020)

Let K be a rational homology $(d-1)$-sphere. If $\mathbf{x}_{\sigma_{1}}, \ldots, \mathbf{x}_{\sigma_{s}}$ generates $(\mathbb{Q}[K] / \Theta)_{k}$, then for each $i \leq d-k$ we have an injection

$$
(\mathbb{Q}[K] / \Theta)_{i} \rightarrow \bigoplus_{j=1}^{s}\left(\mathbb{Q}\left[\mathrm{st}_{\sigma_{j}} K\right] / \Theta\right)_{i} .
$$

Moreover, if there is $\mathcal{S} \subset[m]$ such that $\sigma_{j} \cap \mathcal{S} \neq \varnothing$ for $1 \leq j \leq s$, then for each $i \leq d-k$ we also have an injection

$$
(\mathbb{Q}[K] / \Theta)_{i} \rightarrow \bigoplus_{v \in \mathcal{S}}\left(\mathbb{Q}\left[\mathrm{st}_{v} K\right] / \Theta\right)_{i} .
$$

From this we can derive a result of Swartz:

Theorem (Swartz, 2009)

If $\mathrm{lk}_{v} K$ has WLP for at least $m-d$ of the vertices v of K, then K satisfies the g-conjecture.

Toric spaces over simplicial manifolds

If K is a rational homology $(d-1)$-manifold, then $M_{K}-T^{d}$ is a rational open $2 d$-manifold. Here T^{d} is the orbit of the coning point in P_{K} $\left(\left|P_{K}\right|=|C K|\right)$. This can be seen from a decomposition of M_{K} :

$$
M_{K}=\left(C K \times T^{d}\right) \cup\left(I \times K \times T^{d} / \sim\right) .
$$

Here I is the unit interval.

Theorem (F-, 2020)

The cohomology ring of M_{K} over a rational homology manifold K is

$$
H^{*}\left(M_{K} ; \mathbb{Q}\right) \cong \mathcal{R} \oplus \mathbb{Q}[K] / \Theta, \quad \mathcal{R}^{k}=\bigoplus_{q>0,2 p+q=k}\binom{d}{p+q} \widetilde{H}^{p-1}(K ; \mathbb{Q}),
$$

where \mathcal{R} has trivial multiplication structure.

$$
\text { Let } j^{*}: H^{*}\left(M_{K}, I \times K \times T^{d} / \sim\right) \rightarrow H^{*}\left(M_{K}\right), \quad \mathcal{J}=\bigoplus_{k=1}^{d-1}\left(\operatorname{Im} j^{*}\right)_{2 k}
$$

If K is an orientable rational homology manifold, then the quotient algebra $\mathcal{A}=H^{*}\left(M_{K}\right) / \mathcal{J}$ is a Poincaré duality algebra.

$$
\operatorname{dim} \mathcal{A}^{2 k}=h_{k}(K)-\binom{d}{k} \sum_{i=0}^{k-1}(-1)^{i} \widetilde{\beta}_{k-i-1}(K)
$$

In fields of char $=0$, the above theorem is a topological interpretation of the following two important algebraic results:

Theorem (Schenzel, 1981)

Let K be a k-homology ($d-1$)-manifold. Then,

$$
h^{\prime}(K):=\operatorname{dim}_{\mathbf{k}}(\mathbf{k}[K] / \Theta)_{j}=h_{j}(K)-\binom{d}{j} \sum_{i=1}^{j-1}(-1)^{i} \widetilde{\beta}_{j-i-1}(K ; \mathbf{k}) .
$$

For a graded ring R, the socle of R is

$$
\operatorname{Soc}(R):=\left\{x \in R: x \cdot R_{+}=0\right\} .
$$

Theorem (Novik-Swartz, 2009)

Let K be a orientable k-homology ($d-1$)-manifold, then for any Isop Θ the quotient algebra $\mathbf{k}[K] /(\Theta+J)$ is a Poincaré duality \mathbf{k}-algebra, where

$$
J=\operatorname{Soc}(\mathbf{k}[K] / \Theta)_{<d}, \quad \operatorname{dim} J_{i}=\binom{d}{j} \widetilde{\beta}_{i-1}(K ; \mathbf{k})
$$

Manifold g-conjecture

To generalize the g-conjecture for spheres to manifolds, Kalai introduced the $h^{\prime \prime}$-vectors. Let K be a ($d-1$)-dimensional simplicial complex, and let $h_{i}^{\prime}(K)=\operatorname{dim}_{\mathbf{k}}(\mathbf{k}[K] / \Theta)_{i}$. Then

$$
h_{i}^{\prime \prime}(K)= \begin{cases}h_{i}^{\prime}(K)-\binom{d}{i} \widetilde{\beta}_{i-1}(K ; \mathbf{k}) & \text { if } 0 \leq i<d \\ h_{d}^{\prime}(K) & \text { if } i=d .\end{cases}
$$

Kalai's manifold g-conjecture

If K is an orientable ($d-1$)-dimensional \mathbf{k}-homology manifold, then the vector

$$
\left(g_{i}^{\prime \prime}:=h_{i}^{\prime \prime}-h_{i-1}^{\prime \prime}\right)_{i=0}^{[d / 2]}
$$

is an M-vector.

- If every k-homology sphere has WLP, then Kalai's manifold g-conjecture holds (Novik-Swartz).

Reference

國 K．Adiprasito，Combinatorial Lefschetz theorems beyond positivity， arXiv：1812．10454， 2018.
囯 M．W．Davis and T．Januszkiewicz，Convex polytopes，Coxeter orbifolds and torus actions，Duke Math．J． 62 （1991），no．2， 417－451．
國 F．Fan，Toric spaces and face enumeration on simplicial manifolds， arXiv：2001．08390， 2020.
R．Novik and E．Swartz，Gorenstein rings through face rings of manifolds，Compos．Math． 146 （2009），no．4，993－1000．
R．Stanley，The number of faces of a simplicial convex polytope， Adv．Math． 80 （1980），no．3，251－258．
嗇 E．Swartz，Face enumeration－from spheres to manifolds，J．Eur． Math．Soc． 11 （2009），no．3，449－485．

Thanks!

