Persistent function based machine learning for drug design

Xiang Liu

Nankai University

December 8, 2023

Drug Discovery Process (Simplified)

Clinical Trials

Target Discovery	Lead Discovery	Lead Optimization	•Preclinical Development	Phase 1	Phase 2	Phase 3	Launch
•Target identification •Microarray profiling •Target validation •Assay development •Biochemistry •Clinical/Animal disease models	 High-throughput Screening (HTS) Fragment-based screening Focused libraries Screening collection 	•Medicinal Chemistry •Structure-based drug design •Selectivity screens •ADMET screens •Cellular/Animal disease models •Pharmacokinetics	•Toxicology •In vivo safety pharmacology •Formulation •Dose prediction	PK tolerability	Efficacy	Safety & Efficacy	Indication Discovery & expansion
Discovery			Development				Use
Med. Chem. ML,				Clinical Candidates		ates	Drugs
>450,000 distinct compounds ~25,000 distinct lead series ~12,000 candidates							~1,200 drugs
Time: > [·]	10 years	Cost	: > 2.6 billio	n\$	Hig	h failu	re rate

Drug discovery is a challenging search problem

Number of possible drug-like molecules $\approx 10^{60}$ obeying Lipinski's rule-of-five for oral bioavailability

Kirkpatrick, P., Ellis, C. Nature (2004); Acc. Chem. Res. 2015, 48, 3, 722–730

AI in drug design and discovery

nature	estimation estimation de la comparison d					
Explore content Y About the journal Y Publish with us Y Subscribe						
nature > spotlight > article	View All News Exection tip Announces First AL Designed Immune Oncelleny Drug to Enter Clinical Trials					
SPOTLIGHT 30 May 2018	April 9, 2021					
How artificial intelligence is changing drug discovery	Company's technologies and drug-hunting expertise now responsible for world's first and second AI-designed drugs testing					
Machine learning and other technologies are expected to make the hunt for new pharmaceuticals quicker, cheaper and more effective.	Exscientia, a leading artificial intelligence (AI) driven pharmatech company, today announced the first AI-designer immuno-oncology to enter human clinical trials. The A2a receptor antagonist, which is in development for adult p advanced solid tumours, was co-invented and developed through a Joint Venture between Exscientia and Evote application of Evocientic's part generation a D avalutionary AL design platform as part of Century Chamist®					
	application of Exscientias next generation 5-D evolutionary Ar design platform as part of centaal onemistes.					
How AI could revolutionize drug discovery	INSIDER eMarketer. Q. Search for reports, forecasts, charts, benchmarks and more Log in +) Become a Client Di Industries ~ Products ~ Insights Events Pricing About ~					
November 16, 2022 Video	BEHIND THE NUMBERS Mode possible by Tinuiti Explore the rapidly changing world of digital advertising, media, commerce, and technology. Listen In					
By <u>Alex Devereson</u> , Christoph Sandler, and <u>Lydia The</u> Share Print Download Save	Big pharma is using AI and machine learning in drug					
Artificial intelligence could help scientists develop better	CISCOVERY and Clevelopment to save lives Share on social: f y in ⊠					
But for that to happen, companies will need to change the way they work.	Al and Machine Learning 7 1 1 1 Powerful data and analysis on nearly every digital topic					

Artificial Intelligence

Enabling machines to think like humans

Machine Learning

Training machines to get better at a task without explicit programming

Deep Learning

Using multi-layered networks for machine learning

Feature extraction and feature learning

"The success of machine learning algorithms generally depends on data representation..."

Y. Bengio, etc, "Representation Learning: A Review and New Perspectives "The deep learning research aims at discovering learning algorithms that discover multiple levels of distributed representations..." Y. Bengio, "Deep Learning of Representations: Looking Forward

Molecular Descriptors in QSAR models

More than 5000 Molecular descriptors in Quantitative Structure Activity relationship (QSAR) models.

Grisoni F, Ballabio D, Todeschini R, et al. Molecular descriptors for structure–activity applications: a hands-on approach[M]// Computational Toxicology. Humana Press, New York, NY, 2018: 3-53.

Common chemical descriptors for QSAR/QSPR analysis

Chemical descriptors	Based on	Examples
Theoretical descriptors		
0D	Molecular formula	Molecular weights, atom counts, bond counts
1D	Chemical graph	Fragment counts, functional group counts
2D	Structural topology	Weiner index, Balaban index, Randic index, BCUTS
3D	Structural geometry	WHIM, autocorrelation, 3D-MORSE, GETAWAY
4D	Chemical conformation	Volsurf, GRID, Raptor
Experimental descriptors		
Hydrophobic parameters	Hydrophobicity	Partition coefficents (logP), hydrohobic substituent constant (π)
Electronic parameters	Electronic properties	Acid dissociation constant, Hammett constant
Steric parameters	Steric properties	Taft steric constant, Charton's constant

Topological Data Analysis (TDA)

Topological invariant: Homology Group Homotopy Group Cohomology Ring Steenrod Module

Klein bottle

Topological Data Analysis---- Persistent Homology

 $\beta_0: 6 \ \beta_1: 0$

 $\beta_0: 3 \ \beta_1: 1$

 $\beta_0: 1 \ \beta_1: 1$

 $\beta_0: 1 \quad \beta_1: 1$

 $\beta_0 = 2$ $\beta_1 = 1$ $\beta_2 = 1$

Persistent Homology Analysis of Carbon-60

(Xia, Feng, Tong & Wei, JCC, 2015)

Biomolecular Topological Fingerprints

TF for alpha helix

 β_1

B1

(Xia & Wei, IJNMBE, 2014) *TF for beta barrel*

 $\beta_2 \lfloor 0 \end{bmatrix}$

 β_1

 β_1

TDA based machine learning models

(Pun, Lee and Xia, AIR, 2021)

Recent progress of TDA based drug design

DUD database 128374 protein-ligand/decoy pairs

Prediction correlations for 2648 mutations on globular proteins (Cang & Wei, PLOS CS, 2017)

Prediction RMSD of logP(star set)

MSU Foundation professor

Recent progress of TDA based drug design

Drug Design Data Resource (D3R) Grand Challenges

Grand Challenge 2: win 14% Grand Challenge 3: win 38% while the second winner had a rate of 19% Grand Challenge 4: win 50%

Wei Team's performance at D3R Grand Challenge

÷,	
2	D3R Grand Challenge 4 (2018-2019)
	BACE Stage 1A 1/2 3/3 Pose Predictions (Partials) 1/2 3/3 Pose Prediction (Partials) 2/2 1/2
l	Affinity Predictions
	Cathepsin Stage 1
l	Ligand Based Scoring (No participation)
	Structure Based Scoring
	Free Energy Set 🖉 🦉 🍎
l	BACE Stage 1 BACE Stage 2
	Combined Ligand and Structure (No participation) Combined Ligand and Structure
	Ligand Based Scoring (Partials) (No participation) Ligand Based Scoring (No participation)
	Structure Based Scoring (Partials)(No participation) Structure Based Scoring (Partials)
	Free Energy Set (No participation) Free Energy Set

TDA-based learning models in SARS-Cov-2

Mutations Strengthened SARS-CoV-2 Infectivity

Wei's Team predicts key mutation sites in prevailing variants

Mutations at 501 and 452 in prevailing SARS-Cov-2 variants

Jiahui Chen¹, Rui Wang¹, Menglun Wang¹ and Guo-Wei Wei^{1,2,3}

1 - Department of Mathematics, Michigan State University, MI 48824, USA

2 - Department of Electrical and Computer Engineering, Michigan State University, MI 48824, USA

3 - Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824, USA

Correspondence to Guo-Wei Wei: wei@math.msu.edu https://doi.org/10.1016/j.jmb.2020.07.009 Edited by Anna Panchenko

Received 4 June 2020; Received in revised form 9 July 2020; Accepted 17 July 2020;

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concern in coronavirus disease 2019 (COVID-19) prevention and economic reopening. However, rigorous determination of SARS-CoV-2 infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP) variants in many subtypes. We employ an algebraic topology-based machine learning model to quantitatively evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-converting enzyme 2 receptor following mutations. We reveal that the SARS-CoV-2 virus becomes more infectious. Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have significantly strengthened their infectivity. We also find that SARS-CoV-2 is slightly more infectious than SARS-CoV according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a systematic evaluation of all possible 3686 future mutations on the S protein receptor-binding domain, we show that most likely future mutations will make SARS-CoV-2 more infectious. Combining sequence alignment, probability analysis, and binding free energy calculation, we predict that a few residues on the receptor-binding motif, i.e., 452, 489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains.

Alpha: N501Y Beta: K417N, E484K, N501Y Gamma: K417T, E484K, N501Y Delta: L452R, T478K Epsilon: L452R Kappa: L452R, E484Q Omicron: N501,...

They discovered the mechanism of viral transmission and evolution: more infectious

© 2020 Elsevier Ltd. All rights reserved.

Abstract

Why is TDA so powerful?

Representation

Featurization

Hypergraph based data representation

Grbic J, Wu J, Xia K, Wei GW. Aspects of topological approaches for data science[J]. Foundations of Data Science, 2022.

Jie Wu,

BIMSA

Bressan, Li, Ren, Wu. The embedded homology of hypergraphs and applications , 2016 Ren, Shiquan, et al. "Computing the Homology of Hypergraphs." *arXiv preprint arXiv:1705.00151* (2017).

Ren, Shiquan, Chengyuan Wu, and Jie Wu. "Operators on random hypergraphs and random simplicial complexes." *arXiv preprint arXiv:1712.02045* (2017).

Ren, Shiquan, and Jie Wu. "Stability of persistent homology for hypergraphs." *arXiv* preprint arXiv:2002.02237 (2020).

Ren, Shiquan, et al. "A Discrete Morse Theory for Hypergraphs." *arXiv preprint arXiv:1804.07132* (2018).

Embedded homology of hypergraph

Definition (infimum chain complex)

Given a hypergraph ${\cal H},$ the infimum chain complex of ${\cal H}$ with coefficient R is defined as

 $Inf_n(\mathcal{H}, R) = \sum \{C_n | C_* \text{ is a subchain complex of } R((K_{\mathcal{H}})_*) \text{ and } C_n \subset R(\mathcal{H}_n)\}$

which is the largest subchain complex of the chain complex of $K_{\mathcal{H}}$ that is contained in the graded modules $R(\mathcal{H}_{\star})$

Definition (supremum chain complex)

Given a hypergraph ${\cal H},$ the supremum chain complex of ${\cal H}$ with coefficient R is defined as

 $Sup_n(\mathcal{H},R) = \bigcap \{C_n | \ C_\star \text{ is a subchain complex of } R((K_\mathcal{H})_\star) \text{ and } R(\mathcal{H}_n) \subset C_n \}$

which is the smallest subchain complex of the chain complex of $K_{\mathcal{H}}$ that contains $R(\mathcal{H}_{\star})$ as a graded modules.

Proposition

Given a hypergraph \mathcal{H} , the homology of the infimum chain complex of and supremum chain complex of \mathcal{H} with coefficient R are isomorphic.

Definition (Hypergraph embedded homology)

Given a hypergraph \mathcal{H} , the n-th embedded homology of \mathcal{H} with coefficient R is defined as

 $H_n(\mathcal{H}, R) = H_n(Sup_{\star}(\mathcal{H}, R)) = H_n(Inf_{\star}(\mathcal{H}, R))$

Bressan, Li, Ren, Wu. AJM, 2019

Associated simplicial complex K_H

$$C_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\} \\ C_{1} = Z\{\{0,1\}, \{2,3\}, \{2,4\}, \{3,4\}\} \\ C_{2} = Z\{\{0,12\}\} \\ A_{0} = Z\{\{0,1\}, \{0,2\}, \{1,2\}, \{2,3\}, \{2,4\}, \{3,4\}\} \\ A_{1} = Z\{\{0,1\}, \{0,2\}, \{1,2\}, \{2,3\}, \{2,4\}, \{3,4\}\} \\ A_{2} = Z\{\{0,12\}\} \\ \rightarrow A_{3} \xrightarrow{\partial_{3}} A_{2} \xrightarrow{\partial_{2}} A_{1} \xrightarrow{\partial_{1}} A_{0} \\ S_{n} = C_{n} + \partial_{n+1}(C_{n+1}), I_{n} = C_{n} \cap \partial_{n}^{-1}(C_{n-1}) \end{cases} \qquad I_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\} \\ I_{1} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ S_{0} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = 0 \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}\}\} \\ I_{2} = Z\{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{4\}, \{4\}\}\} \\ I_{2} = Z\{\{0\}, \{4\}, \{4\}, \{4\},$$

Protein-ligand interaction modeled as hypergraph

Liu, Wang, Wu, Xia, BIB, 2021

Hypergraphbased models

Hypergraph-based filtration

filtration=3.9

filtration=4.3

filtration=4.1

filtration=4.4

filtration=3.8

filtration=4.2

filtration=4.5

Bipartite graph VS Hypergraph

(c)

(b)

Benchmark testing with PDBbind datasets

Model setting: homology vectors + Gradientboostingtree

Persistent function based machine learning

Data

Protein-protein complex

Representation

Featurization

Persistent Tor-algebra

Learning

Deep learning: Convolution neural network,...

Simplicial complex: Neighborhood complex, Dowker complex,...

Polyhedral complex: Hom complex...

Hypergraph, Super-hypergraph ...

Algebraic representation: face ring...

