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Drug Discovery Process (Simplified)
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Drug discovery is a challenging search
problem

Best drug

Number of possible drug-like molecules ~ 10°Y
obeying Lipinski’s rule-of-five for oral bioavailability

Kirkpatrick, P., Ellis, C. Nature (2004); Acc. Chem. Res. 2015, 48, 3, 722-730



Al in drug design and discovery
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Exscientia. a leading artificial intelligence (Al) driven pharmatech company. today announced the first Al-designed

pharmaceuticals quicker, cheaper and more effective. immuno-oncology to enter human clinical trials. The A2a receptor antagonist, which is in development for adult p

advanced solid tumours, was co-invented and developed through a Joint Venture between Exscientia and Evoted

Nic Fleming application of Exscientia's next generation 3-D evolutionary Al-design platform as part of Centaur Chemist®.
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Artificial intelligence could help scientists develop better

medicines faster—and thus improve millions of people’s lives!
But for that to happen, companies will need to change the to\l L, %" Aland Machine Learning  *7 % I,ag

on nearly every
digital topic
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way they work.




Artificial Intelligence

Enabling machines to think like humans

Machine Learning

Training machines to get better at a task without explicit programming




Feature extraction and feature learning

“The success of “The deep learning research
machine learning aims at discovering learning
algorithms generally algorithms that discover

multiple levels of distributed
representations...”

Y. Bengio, “Deep Learning of
Representations: Looking
Forward

depends on data

representation...”

Y. Bengio, efc,“Representation
Learning: A Review and New
Perspectives

Machine Learning
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Molecular Descriptors in
@SAR models \QI

More than 5000 Molecular oD 1D 2D 3D 4D
descriptors in Quantitative 0 0 oo 0o
Structure Activity relationship °©, 0, { "”Oj" Qfﬁ
(QSAR) models. *ete® 050 oS ® k
e%e o %o g’a*o
Grisoni F, Ballabio D, Todeschini R, et al. 2 Q
Molecular descriptors for structure—activity
applications: a hands-on approach[M]// »
Computational Toxicology. Humana Press, New Information content

York, NY, 2018: 3-53.

Ease of calculation

Common chemical descriptors for QSAR/QSPR analysis

Chemical descriptors Based on Examples

Theoretical descriptors

0D Molecular formula Molecular weights, atom counts, bond counts

1D Chemical graph Fragment counts, functional group counts

2D Structural topology Weiner index, Balaban index, Randic index, BCUTS
3D Structural geometry WHIM, autocorrelation, 3D-MORSE, GETAWAY

4D Chemical conformation Volsurf, GRID, Raptor

Experimental descriptors

Hydrophobic parameters Hydrophobicity Partition coefficents (logP), hydrohobic substituent constant (1T)
Electronic parameters Electronic properties Acid dissociation constant, Hammett constant

Steric parameters Steric properties ~Taft steric constant, Charton's constant




Topological Data Analysis (TDA)

Klein bottle




Topological Data Analysis---- Persistent Homology
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Persistent Homology Analysis of Carbon-60
(Xia, Feng, Tong & Wei, JCC, 2015)
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Biomolecular Topological Fingerprints
(Xia & Wei, INMBE, 2014)
TF for beta barrel

TF for alpha helix
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TDA based machine learning models
(Pun, Lee and Xia, AIR, 2021)
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Recent progress of TDA
based drug design —

MSU Foundation professor

DUD database 128374 protein-ligand/decoy pairs
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Recent pr'og ress of TDA Drug Design Data Resource (D3R)
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TDA-based learning models in SARS-Cov-2

Mutations Strengthened SARS-
CoV-2 Infectivity
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is a major concem in coronavirus
disease 2019 (COVID-19) prevention and economic reopening. However, rigorous detemmination of SARS-CoV-2
infectivity is very difficult owing to its continuous evolution with over 10,000 single nucleotide polymorphisms (SNP)
variants in many subtypes. We employ an algebraie topalogy-based machine leaming model o quantitatively
evaluate the binding free energy changes of SARS-CoV-2 spike glycoprotein (S protein) and host angiotensin-
converiing enzyme 2 receptor following mutations. Werevealthatthe SARS-CoV-2virusbecomes more infeciious.
Three out of six SARS-CoV-2 subtypes have become slightly more infectious, while the other three subtypes have
significantly strengthened their infectivity. We alsofind that SARS-CoV-2 s slightly more infectious than SARS-CoV
according to computed S protein-angiotensin-converting enzyme 2 binding free energy changes. Based on a
systematic evaluation of gllpossible 3686 future mutations on the S protein receptor-binding domain, we show that
most likely future mutations will make SARS-CoV-2 more infeciious. Combining sequence alignment, probability
analysis, and binding free energy calculation, Weé prédict that'a few residues on the receptor-binding motif, i.e., 452;
489, 500, 501, and 505, have high chances to mutate into significantly more infectious COVID-19 strains.

© 2020 Elsevier Ltd. All rights reserved.

Abstract

Wei’s Team predicts key mutation
sites in prevailing variants

Mutations at 501 and 452 in
prevailing SARS-Cov-2 variants

Alpha: N501Y

Beta: K417N, E484K, N501Y
Gamma: K417T, E484K, N501Y
Delta: L452R, T478K

Epsilon: L452R

Kappa: L452R, E484Q
Omicron: N501,...

They discovered
the mechanism of
viral transmission
and evolution:
more infectious



Why is TDA so powerful ?

Representation

Graph Simplicial complex Filtered simplicial complex
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Graph Simplicial complex Hypergraph Super-hypergraph

Hypergraph based
data representation

Grbic J, Wu J, Xia K, Wei GW. Aspects of topological approaches for data science[J].

Foundations of Data Science, 2022. ‘

Bressan, Li, Ren, Wu. The embedded homology of hypergraphs and applications , 2016 .i h

Ren, Shiquan, et al. "Computing the Homology of Hypergraphs." arXiv preprint

arXiv:1705.00151 (2017).

Ren, Shiquan, Chengyuan Wu, and Jie Wu. "Operators on random hypergraphs and

random simplicial complexes." arXiv preprint arXiv:1712.02045 (2017). ’ .
Ren, Shiquan, and Jie Wu. "Stability of persistent homology for hypergraphs." arXiv w w
preprint arXiv:2002.02237 (2020). .lh ‘lh
Ren, Shiquan, et al. "A Discrete Morse Theory for Hypergraphs." arXiv preprint

arXiv:1804.07132 (2018).



Embedded homology of hypergraph

Definition (infimum chain complex)

Given a hypergraph H, the infimum chain complex of H with coefficient R
is defined as

Info(H, R) = Z{Cn| C. is a subchain complex of R((K)x) and Co C R(Hn)}

which is the largest subchain complex of the chain complex of Ky that is
contained in the graded modules R(H.,)

o

Definition (supremum chain complex)

Given a hypergraph H, the supremum chain complex of H with coefficient
R is defined as

Supp(H,R) = m{C,,| C, is a subchain complex of R((Ky)+) and R(H,) C Ca}

which is the smallest subchain complex of the chain complex of Ky that
contains R(H,) as a graded modules.

Bressan, Li, Ren, Wu. AJM, 2019

® V2 ///. V2
® Vo L Vi /////
o v e Vi
Associated
Hypergraph H .
simplicial complex
Ky

Proposition

Given a hypergraph H, the homology of the infimum chain complex of and supremum chain

complex of H with coefficient R are isomorphic.

Definition (Hypergraph embedded homology)

Given a hypergraph H, the n-th embedded homology of H with coefficient R is defined as

HH(H:' R) — HH(SUP*(H, R)) — Hﬂ(fnﬁr(?{: R))
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Liu, Wang, Wu, Xia,

BIB, 2021

HYPErg raph_
based models

Hypergraph-based filtration
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Benchmark testing
Dataset 2007 with PDBbind
datasets

0.5

Model setting:
homology vectors
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Persistent function based machine learning

Data Representation

Simplicial complex: Neighborhood
complex, Dowker complex,...

Protein \- Al

Polyhedral complex: Hom complex...
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Featurization

Persistent homology
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Learning

Machine learning: Random
Forest, GBT, SVM,...

g

Deep learning: Convolution
neural network,...

PPI Structure
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