Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction

Persistent Path-Spectral Based Machine Learning for Protein-Ligand Binding Affinity Prediction

Ran Liu

BUAA & BIMSA

Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction 00000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Motivation

Persisitent Path Spectral(PPS)

Protein-Ligand Binding Affinity Prediction

 $\substack{ \text{Motivation} \\ \bullet 00 }$

Persisitent Path Spectral(PPS)

Protein-Ligand Binding Affinity Prediction 00000000000

Motivation

Persisitent Path Spectral (PPS)

Protein-Ligand Binding Affinity Prediction

Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivation

• Persistent homology, a key theory for TDA, has been applied to numerous data science fields with many achievements. Its essence is to provide topological features to the data. Persisitent Path Spectral(PPS) 000000000

Protein-Ligand Binding Affinity Prediction 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivation

• Persistent homology, a key theory for TDA, has been applied to numerous data science fields with many achievements. Its essence is to provide topological features to the data.

Protein-Ligand Binding Affinity Prediction 00000000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation

• Recently, research Beyond TDA is being conducted.

Protein-Ligand Binding Affinity Prediction 00000000000

Motivation

• Recently, research Beyond TDA is being conducted.

Protein-Ligand Binding Affinity Prediction 00000000000

Motivation

• Recently, research Beyond TDA is being conducted.

• The idea of hopping has been introducted on graph, and used to construct Laplacian matrix.

Protein-Ligand Binding Affinity Prediction 00000000000

Motivation

• Recently, research Beyond TDA is being conducted.

- The idea of hopping has been introducted on graph, and used to construct Laplacian matrix.
- We introduce the idea of hopping into the high-dimensional plate, combine it with the filtering process, consider specifically the Laplacian matrix, feed its spectral information into machine learning to obtain the Persistent Path Spectral(PPS) model, which can give a quantitative description of the data.

 $\begin{array}{c} \mathrm{Motivation} \\ \mathrm{OO} \bullet \end{array}$

Persisitent Path Spectral(PPS) 000000000

Protein-Ligand Binding Affinity Prediction 00000000000

Motivation

• Recently, research Beyond TDA is being conducted.

- The idea of hopping has been introducted on graph, and used to construct Laplacian matrix.
- We introduce the idea of hopping into the high-dimensional plate, combine it with the filtering process, consider specifically the Laplacian matrix, feed its spectral information into machine learning to obtain the Persistent Path Spectral(PPS) model, which can give a quantitative description of the data.
- And test our model on issue of protein-ligand binding affinity prediction, PPS model can achieve competitive results.

Persisitent Path Spectral(PPS) \bullet 0000000000

Protein-Ligand Binding Affinity Prediction 00000000000

Motivation

Persisitent Path Spectral (PPS)

Protein-Ligand Binding Affinity Prediction

Persisitent Path Spectral(PPS) $0 \bullet 000000000$

Protein-Ligand Binding Affinity Prediction

Definition (Simplicial Complex)

An (abstract) simplicial complex C is a pair (V, C_V) where V is a vertex set and C is a simplex set, such that every $\sigma \in C_V$ is a nonempty subset of vertex set, and every nonempty subset of σ is also $\in C_V$.

Persisitent Path Spectral(PPS) 000000000 Protein-Ligand Binding Affinity Prediction

うして ふゆ く は く は く む く し く

Definition (Simplicial Complex)

An (abstract) simplicial complex C is a pair (V, C_V) where V is a vertex set and C is a simplex set, such that every $\sigma \in C_V$ is a nonempty subset of vertex set, and every nonempty subset of σ is also $\in C_V$.

Definition (n-simplex walk,path)

A series of n-simplices $\sigma_1^n, \sigma_2^n, ..., \sigma_l^n, \sigma_{l+1}^n$ (not must diverse) is called an **n-simplex walk** from σ_1^n to σ_{l+1}^n while σ_i^n and σ_{i+1}^n share an (n+1)-simplex for each i = 1, 2, ..., l.

Persisitent Path Spectral(PPS) 000000000 Protein-Ligand Binding Affinity Prediction 00000000000

ション ふゆ さい ション ション ひゃく

Definition (Simplicial Complex)

An (abstract) simplicial complex C is a pair (V, C_V) where V is a vertex set and C is a simplex set, such that every $\sigma \in C_V$ is a nonempty subset of vertex set, and every nonempty subset of σ is also $\in C_V$.

Definition (n-simplex walk,path)

A series of n-simplices $\sigma_1^n, \sigma_2^n, ..., \sigma_l^n, \sigma_{l+1}^n$ (not must diverse) is called an **n-simplex walk** from σ_1^n to σ_{l+1}^n while σ_i^n and σ_{i+1}^n share an (n+1)-simplex for each i = 1, 2, ..., l.

Under another additional condition that these n-simplices are different from each other, this n-simplex walk turns into an n-simplex path.

 $\begin{array}{c} \mathrm{Motivation} \\ \mathrm{OOO} \end{array}$

Protein-Ligand Binding Affinity Prediction 00000000000

Definition (shortest path)

Among all the n-simplex paths between σ_i^n and σ_j^n , the ones having the minimum number of (n+1)-simplexes are called **the shortest** *n*-simplex paths(may more than one).

Protein-Ligand Binding Affinity Prediction

Definition (shortest path)

Among all the n-simplex paths between σ_i^n and σ_j^n , the ones having the minimum number of (n+1)-simplexes are called **the shortest** *n*-simplex paths(may more than one).

Definition (path-distance)

The number of (n+1)-simplexes which a shortest n-simplex path between σ_i^n and σ_j^n passes is called the **path-distance** between n-simplices σ_i^n and σ_j^n , and denoted by $d_{i,j}^n$.

Protein-Ligand Binding Affinity Prediction

うして ふゆ く は く は く む く し く

Definition (shortest path)

Among all the n-simplex paths between σ_i^n and σ_j^n , the ones having the minimum number of (n+1)-simplexes are called **the shortest** *n*-simplex paths(may more than one).

Definition (path-distance)

The number of (n+1)-simplexes which a shortest n-simplex path between σ_i^n and σ_j^n passes is called the **path-distance** between n-simplices σ_i^n and σ_j^n , and denoted by $d_{i,j}^n$.

Definition (k-hopping n-simplex walk,path)

An n-simplex walk $\sigma_1^n, \sigma_2^n, ..., \sigma_l^n, \sigma_{l+1}^n$ is called a **k-hopping n-simplex walk** if the path-distance of σ_i^n and σ_{i+1}^n is k $(d_{i,i+1}^n = k)$.

Definition (shortest path)

Among all the n-simplex paths between σ_i^n and σ_j^n , the ones having the minimum number of (n+1)-simplexes are called **the shortest** *n*-simplex paths(may more than one).

Definition (path-distance)

The number of (n+1)-simplexes which a shortest n-simplex path between σ_i^n and σ_j^n passes is called the **path-distance** between n-simplices σ_i^n and σ_j^n , and denoted by $d_{i,j}^n$.

Definition (k-hopping n-simplex walk,path)

An n-simplex walk $\sigma_1^n, \sigma_2^n, ..., \sigma_l^n, \sigma_{l+1}^n$ is called a **k-hopping n-simplex walk** if the path-distance of σ_i^n and σ_{i+1}^n is k $(d_{i,i+1}^n = k)$.

When these n-simplices are different from each other, this k-hopping n-simplex walk turns into a k-hopping n-simplex path.

Persisitent Path Spectral(PPS)

Protein-Ligand Binding Affinity Prediction

Example: hopping path of simplicial complex

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Persisitent Path Spectral(PPS) 0000000000

Protein-Ligand Binding Affinity Prediction 00000000000

Definition (k-hopping n-simplex connected component)

Persisitent Path Spectral(PPS) 000000000

Protein-Ligand Binding Affinity Prediction 00000000000

Definition (k-hopping n-simplex connected component)

Persisitent Path Spectral(PPS) 0000000000

Protein-Ligand Binding Affinity Prediction 00000000000

うして ふゆ く は く は く む く し く

Definition (k-hopping n-simplex connected component)

Given a simplicial complex C, which can be represented by $\{C_n\}_{n\geq 0}$, here C_n is the collection of all n-simplices. For a subset of C_n , donated as X_n , if there is a k-hopping n-simplex walk visiting every n-simplices of X_n at lowest, the subset X_n is defined as a k-hopping n-simplex connected component of C, which denoted by (k,n)connected component for simplicity.

• 2-hopping vertex walk:

 $\{v_1, v_6, v_7, v_5, v_7, v_9, v_2, v_4, v_8, v_4, v_3\}$

• 3-hopping vertex walk: $\{v_3, v_9, v_8, v_5, v_3, v_6\}; \{v_2, v_7, v_1\}; \{v_4\}$

Persisitent Path Spectral(PPS) 0000000000

Protein-Ligand Binding Affinity Prediction 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition (k-hopping n-simplex connected component)

- 2-hopping vertex walk:
 - $\{v_1, v_6, v_7, v_5, v_7, v_9, v_2, v_4, v_8, v_4, v_3\}$
- 3-hopping vertex walk: $\{v_3, v_9, v_8, v_5, v_3, v_6\}; \{v_2, v_7, v_1\}; \{v_4\}$
- one (2,0) connected component, three (3,0) connected components

Persisitent Path Spectral(PPS) 0000000000

Protein-Ligand Binding Affinity Prediction 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition (k-hopping n-simplex connected component)

- 2-hopping vertex walk:
 - $\{v_1, v_6, v_7, v_5, v_7, v_9, v_2, v_4, v_8, v_4, v_3\}$
- 3-hopping vertex walk: $\{v_3, v_9, v_8, v_5, v_3, v_6\}; \{v_2, v_7, v_1\}; \{v_4\}$
- one (2,0) connected component, three (3,0) connected components
- 2-hopping edge walk: $\{[1,2], [5,9], [2,5], [1,9], [4,5], [1,5], [4,9]\}$
- 3-hopping edge walk: $\{[1,2], [4,5], [2,5], [4,9]\}$

Persisitent Path Spectral(PPS) 0000000000

Protein-Ligand Binding Affinity Prediction 00000000000

Definition (k-hopping n-simplex connected component)

- 2-hopping vertex walk:
 - $\{v_1, v_6, v_7, v_5, v_7, v_9, v_2, v_4, v_8, v_4, v_3\}$
- 3-hopping vertex walk: $\{v_3, v_9, v_8, v_5, v_3, v_6\}; \{v_2, v_7, v_1\}; \{v_4\}$
- one (2,0) connected component, three (3,0) connected components
- 2-hopping edge walk: $\{[1,2], [5,9], [2,5], [1,9], [4,5], [1,5], [4,9]\}$
- 3-hopping edge walk: $\{[1,2], [4,5], [2,5], [4,9]\}$
- seven (2,1) connected components, ten (3,1) connected components

Persisitent Path Spectral(PPS) 00000000000

Protein-Ligand Binding Affinity Prediction 00000000000

Definition (k-path degree)

k-path degree $\delta_k(\sigma_i^n)$ of σ_i^n is defined as the count of n-simplices σ_j^n such that the path-distance between σ_i^n and σ_i^n is k.

Persisitent Path Spectral(PPS) 00000000000

Protein-Ligand Binding Affinity Prediction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition (k-path degree)

k-path degree $\delta_k(\sigma_i^n)$ of σ_i^n is defined as the count of n-simplices σ_j^n such that the path-distance between σ_i^n and σ_j^n is k.

Definition ((k,n) path-Laplacian)

The k-path n-simplex Laplacian matrix L_k^n of simplicial complex C is a $N(C_n)$ order square symmetric matrix whose entries is shown as follows, denoted by (k,n) path-Laplacian.

$$L_k^n(C)(i,j) = \begin{cases} \delta_k(\sigma_i^n) &, i = j \\ -1 &, d_{i,j}^n = k \\ 0 &, otherwise \end{cases}$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition (k-path degree)

k-path degree $\delta_k(\sigma_i^n)$ of σ_i^n is defined as the count of n-simplices σ_j^n such that the path-distance between σ_i^n and σ_j^n is k.

Definition ((k,n) path-Laplacian)

The k-path n-simplex Laplacian matrix L_k^n of simplicial complex C is a $N(C_n)$ order square symmetric matrix whose entries is shown as follows, denoted by (k,n) path-Laplacian.

$$L_k^n(C)(i,j) = \begin{cases} \delta_k(\sigma_i^n) &, i = j \\ -1 &, d_{i,j}^n = k \\ 0 &, otherwise \end{cases}$$
(1)

Theorem

The number of k-hopping n-simplex connected components is the multiplicity of zero eigenvalue of (k,n) path-Laplacian.

Protein-Ligand Binding Affinity Prediction 00000000000

Example: Laplacian matrix of C_{20}

Figure: Vertex(0-simplex) path-Laplacian matrices with filtration values 1.0Å, 1.5Å, 2.3Å, 3.3Å, 3.7Å, 4.0Å.

▲□▶ ▲□▶ ★ ヨ▶ ★ ヨ▶ - ヨー の Q ()

Example: Persistent feature of C_{20}

イロト 不得下 イヨト イヨト

Protein-Ligand Binding Affinity Prediction 00000000000

Definition (path spectral)

The eigenvalues and eigenvectors of the (k,n) path-Laplacian matrix is called the (k,n) path-spectral of the simplicial complex.

うして ふゆ く は く は く む く し く

Definition (path spectral)

The eigenvalues and eigenvectors of the (k,n) path-Laplacian matrix is called the (k,n) path-spectral of the simplicial complex.

Assume we have a filtration of simplicial complexes, which is a sequence of nested simplicial complexes

$$O_1 \subset O_2 \subset \ldots \subset O_t$$

where O_i is a sub-complex of $O_{i+1}(0 < i < t)$. For each O_i , we consider its (k, n) path-Laplacian matrix $L_k^n(O_i)$, then we get a sequence of path-Laplacian matrixes for each pair (k, n)

$$L_{k}^{n}(O_{1}), L_{k}^{n}(O_{2}), ..., L_{k}^{n}(O_{t})$$

Definition (path spectral)

The eigenvalues and eigenvectors of the (k,n) path-Laplacian matrix is called the (k,n) path-spectral of the simplicial complex.

Assume we have a filtration of simplicial complexes, which is a sequence of nested simplicial complexes

$$O_1 \subset O_2 \subset \ldots \subset O_t$$

where O_i is a sub-complex of $O_{i+1}(0 < i < t)$. For each O_i , we consider its (k, n) path-Laplacian matrix $L_k^n(O_i)$, then we get a sequence of path-Laplacian matrixes for each pair (k, n)

 $L_{k}^{n}(O_{1}), L_{k}^{n}(O_{2}), ..., L_{k}^{n}(O_{t})$

Definition (persistent path spectral)

The persistence and variance of the path-spectral information through the sequence of path-Laplacian matrixes is called the **persistent path-spectral** of the sequence of simplicial complexes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Persisitent Path Spectral(PPS) 000000000

Protein-Ligand Binding Affinity Prediction 00000000000

イロト 不得下 イヨト イヨト

э

Example: Persisitent path-spectral of C_{20}

Figure: Persistent attribute curves from persistent path-spectral for C_{20} . Left is based on vertex, right is based on edge.

Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction $\textcircled{\sc 0}{\sc 0}{\sc$

Motivation

Persisitent Path Spectral (PPS)

Protein-Ligand Binding Affinity Prediction

Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction 00000000000

Protein-Ligand Complex and Affinity

• A protein-ligand complex is a complex of a protein bound with a ligand that is formed following molecular recognition between proteins that interact with each other or with various other molecules.

(日)

Figure: Protein-ligand complex ID: 1b3f.

Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction 00000000000

Protein-Ligand Complex and Affinity

Figure: Protein-ligand complex ID: 1b3f.

- A protein-ligand complex is a complex of a protein bound with a ligand that is formed following molecular recognition between proteins that interact with each other or with various other molecules.
- The highest possible affinity from a protein towards the ligand, or target molecule, can be observed when the protein has a perfect mirror image of the shape of the target surface together with a charge distribution that complements perfectly the target surface.

Persisitent Path Spectral(PPS) 000000000 Protein-Ligand Binding Affinity Prediction 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Protein-ligand binding affinity prediction

• The task of predicting the interactions between compounds and proteins is the core and foundation of drug discovery, which consists of protein-ligand interaction, protein-ligand binding affinity, protein-ligand interaction sites and ligand bioactivity on proteins.

Persisitent Path Spectral(PPS) 000000000 Protein-Ligand Binding Affinity Prediction 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Protein-ligand binding affinity prediction

- The task of predicting the interactions between compounds and proteins is the core and foundation of drug discovery, which consists of protein-ligand interaction, protein-ligand binding affinity, protein-ligand interaction sites and ligand bioactivity on proteins.
- Protein-ligand interaction, also known as compound-protein interaction, is most reliably determined by in vitro experiments or biochips.

Persisitent Path Spectral(PPS) 0000000000

Protein-Ligand Binding Affinity Prediction 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Protein-ligand binding affinity prediction

- The task of predicting the interactions between compounds and proteins is the core and foundation of drug discovery, which consists of protein-ligand interaction, protein-ligand binding affinity, protein-ligand interaction sites and ligand bioactivity on proteins.
- Protein-ligand interaction, also known as compound-protein interaction, is most reliably determined by in vitro experiments or biochips.
- However, this is extremely costly in the first screening of a compound, which requires a prohibitively enormous search space.

Persisitent Path Spectral(PPS) 0000000000

Protein-Ligand Binding Affinity Prediction 00000000000

Protein-ligand binding affinity prediction

- The task of predicting the interactions between compounds and proteins is the core and foundation of drug discovery, which consists of protein-ligand interaction, protein-ligand binding affinity, protein-ligand interaction sites and ligand bioactivity on proteins.
- Protein-ligand interaction, also known as compound-protein interaction, is most reliably determined by in vitro experiments or biochips.
- However, this is extremely costly in the first screening of a compound, which requires a prohibitively enormous search space.
- To narrow the search space, there is an urgent need to develop more efficient computational approaches.

Persisitent Path Spectral(PPS) 0000000000

Computational approaches

The computational approaches for protein-ligand binding affinity pediction are usually called scoring functions (SFs), which can be generally divided into two groups.

Persisitent Path Spectral(PPS) 0000000000 ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Computational approaches

The computational approaches for protein-ligand binding affinity pediction are usually called scoring functions (SFs), which can be generally divided into two groups.

- 1. One is the classical methods which usually use linear functions to model the relationship between experimental data and features. Classical methods can be divided into three groups:
 - Physics-based(force-field based) methods
 - Empirical (regression-based) methods
 - Knowledge-based methods

Persisitent Path Spectral(PPS) 0000000000

Protein-Ligand Binding Affinity Prediction 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Computational approaches

The computational approaches for protein-ligand binding affinity pediction are usually called scoring functions (SFs), which can be generally divided into two groups.

- 1. One is the classical methods which usually use linear functions to model the relationship between experimental data and features. Classical methods can be divided into three groups:
 - Physics-based(force-field based) methods
 - Empirical (regression-based) methods
 - Knowledge-based methods
- 2. The other is artificial intelligence (AI) based methods which can capture nonlinear relationship between features and experimental data. AI based models can be grouped into two categories:
 - Machine learning models
 - Deep learning models

Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction 00000000000

Representation of Protein-Ligand Complex

• For the topological representation of a protein-ligand complex, its binding core region is extracted and characterized by element-specific representation.

Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Representation of Protein-Ligand Complex

- For the topological representation of a protein-ligand complex, its binding core region is extracted and characterized by element-specific representation.
- Euclidean distance and electrostatic distance functions are used to form the filtration of the representation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Representation of Protein-Ligand Complex

- For the topological representation of a protein-ligand complex, its binding core region is extracted and characterized by element-specific representation.
- Euclidean distance and electrostatic distance functions are used to form the filtration of the representation.
- For each protein-ligand complex, 36 atom combinations are generated with protein atoms C, N, O, S and ligand atoms C, N, O, S, P, F, Cl, Br, I. And a filtered bipartite graph is constructed from every atom-combination where the distance is used as the filtration value for each edge.

Representation of Protein-Ligand Complex

- For the topological representation of a protein-ligand complex, its binding core region is extracted and characterized by element-specific representation.
- Euclidean distance and electrostatic distance functions are used to form the filtration of the representation.
- For each protein-ligand complex, 36 atom combinations are generated with protein atoms C, N, O, S and ligand atoms C, N, O, S, P, F, Cl, Br, I. And a filtered bipartite graph is constructed from every atom-combination where the distance is used as the filtration value for each edge.
- For electrostatic interactions, H atoms are also taken into consideration and a total of 50 atom combinations are generated from electrostatic interactions.

 $\begin{array}{c} \mathrm{Motivation} \\ \mathrm{OOO} \end{array}$

Persisitent Path Spectral(PPS)

Protein-Ligand Binding Affinity Prediction 00000000000

Featurization

• For the topological representation of a protein-ligand complex, use PPS to obtain feature, which can be combined with machine learning model.

Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction 00000000000

Featurization

- For the topological representation of a protein-ligand complex, use PPS to obtain feature, which can be combined with machine learning model.
- For the distance-based PPS model, the filtration goes from 0Å to 10 Å with a step of 0.1 Å, and for the electrostatic-based PPS model, the filtration goes from 0 to 1 with a step of 0.02.

Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction 00000000000

Featurization

- For the topological representation of a protein-ligand complex, use PPS to obtain feature, which can be combined with machine learning model.
- For the distance-based PPS model, the filtration goes from 0Å to 10 Å with a step of 0.1 Å, and for the electrostatic-based PPS model, the filtration goes from 0 to 1 with a step of 0.02.
- We use persistent median value curve and persistent mean value curve of the persistent spectral with hopping 1, 2 and 3 as the features.

Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction 00000000000

Featurization

- For the topological representation of a protein-ligand complex, use PPS to obtain feature, which can be combined with machine learning model.
- For the distance-based PPS model, the filtration goes from 0Å to 10 Å with a step of 0.1 Å, and for the electrostatic-based PPS model, the filtration goes from 0 to 1 with a step of 0.02.
- We use persistent median value curve and persistent mean value curve of the persistent spectral with hopping 1, 2 and 3 as the features.
- The size of features based distance-model is 21600 = 36(atom-combinations) × 100(persistence) × 3(hopping) × 2, the size of features based electrostatic function is 15000 = 50(atom-combinations) × 50(persistence) × 3(hopping) × 2. Combined model's feature size is 36600 = 21600 + 15000.

Persisitent Path Spectral(PPS) 0000000000

Machine Learning

• As one of the most powerful algorithms in supervised learning, the gradient boosting tree (GBT) algorithm is a machine learning algorithm that combines decision tree and ensemble learning.

Persisitent Path Spectral(PPS) 000000000 Protein-Ligand Binding Affinity Prediction 000000000000

Machine Learning

- As one of the most powerful algorithms in supervised learning, the gradient boosting tree (GBT) algorithm is a machine learning algorithm that combines decision tree and ensemble learning.
- GBT is widely used and highly inclusive of feature inputs, and can achieve very robustness and generalization with stable loss functions.

Persisitent Path Spectral(PPS) 000000000 Protein-Ligand Binding Affinity Prediction 000000000000

Machine Learning

- As one of the most powerful algorithms in supervised learning, the gradient boosting tree (GBT) algorithm is a machine learning algorithm that combines decision tree and ensemble learning.
- GBT is widely used and highly inclusive of feature inputs, and can achieve very robustness and generalization with stable loss functions.
- The molecular descriptors obtained by PPS are used as feature inputs to GBT to obtain a machine learning model based on PPS, which denoted by PPS-ML.

Persisitent Path Spectral(PPS) 000000000 Protein-Ligand Binding Affinity Prediction 000000000000

Machine Learning

- As one of the most powerful algorithms in supervised learning, the gradient boosting tree (GBT) algorithm is a machine learning algorithm that combines decision tree and ensemble learning.
- GBT is widely used and highly inclusive of feature inputs, and can achieve very robustness and generalization with stable loss functions.
- The molecular descriptors obtained by PPS are used as feature inputs to GBT to obtain a machine learning model based on PPS, which denoted by PPS-ML.

No. of estimators	Maximum features	Learning rate	Loss function
40000	Square root	0.001	Least square
Minimum sample split	Subsample size	Maximum depth	Repetition
3	0.7	6	10

Table: Detailed parameters of GBT

Persisitent Path Spectral(PPS) 0000000000

Protein-Ligand Binding Affinity Prediction 000000000000

Datasets

- The PDBbind database is a collection of the experimentally measured binding affinities exclusively for the protein-ligand complexes available in the Protein Data Bank(PDB).
- This type of knowledge is the much needed basis for many computational and statistical studies on molecular recognition.

Dataset	Refined set	Training set	Test set (Core set)
PBDbind-v2007	1300	1105	195
PDBbind-v2013	2959	2764	195
PDBbind-v2016	4057	3772	285

Table: Detailed information of the three PDBbind datasets, i.e., PDBbind-v2007, PDBbind-v2013, PDBbind-v2016.

Result

PDBbind-v2016	Dist	Charg	Dist+Charg
1-hopping	0.793(1.393)	0.808(1.359)	0.823(1.322)
2-hopping	0.792(1.392)	0.798(1.374)	0.810(1.347)
3-hopping	0.781(1.436)	0.800(1.375)	0.811(1.354)
(1,2,3)-hopping	0.829(1.287)	0.832(1.269)	0.843(1.248)
PDBbind-v2013	Dist	Charg	Dist+Charg
1-hopping	0.746(1.561)	0.760(1.534)	0.775(1.503)
2-hopping	0.753(1.535)	0.759(1.518)	0.767(1.497)
3-hopping	0.733(1.584)	0.725(1.606)	0.745(1.560)
(1,2,3)-hopping	0.778(1.478)	0.778(1.473)	0.791(1.444)
PDBbind-v2007	Dist	Charg	Dist+Charg
1-hopping	0.791(1.534)	0.800(1.509)	0.804(1.509)
2-hopping	0.793(1.500)	0.766(1.559)	0.791(1.497)
3-hopping	0.781(1.540)	0.776(1.547)	0.799(1.499)
(1,2,3)-hopping	0.818(1.142)	0.827(1.399)	0.827(1.399)

Table: PCCs and RMSEs of PPS-ML models on three datasets.

Persisitent Path Spectral(PPS) 000000000

Protein-Ligand Binding Affinity Prediction

Result

Figure: Performance of PPS-ML model on three datasets. $(\Box \rightarrow \langle \Box \rangle \langle \Box$

Persisitent Path Spectral(PPS)

Protein-Ligand Binding Affinity Prediction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Result

- In our model, the feature size is 36600, which is much larger than the data size of three PDBbind datasets we used.
- We expanded the parameter step by 5 times for feature generation to do regression to alleviate overfitting problem.

Dataset	Original size(36600)	Adjusted size(7320)
PDBbind-v2016	0.843(1.248)	0.839(1.257)
PDBbind-v2013	0.791(1.444)	0.790(1.447)
PBDbind-v2007	0.827(1.399)	0.830(1.390)

Table: PCCs and RMSEs of PPS-ML model on three datasets based on different feature size.

Persisitent Path Spectral(PPS) 0000000000 Protein-Ligand Binding Affinity Prediction 00000000000

・ロト ・個ト ・モト ・モト

