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Persistent Path-Spectral Based Machine
Learning for Protein-Ligand Binding Affinity

Prediction

Ran Liu
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Motivation
• Persistent homology, a key theory for TDA, has been applied to

numerous data science fields with many achievements. Its essence
is to provide topological features to the data.
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Motivation
• Recently, research Beyond TDA is being conducted.

• The idea of hopping has been introducted on graph, and used to
construct Laplacian matrix.

• We introduce the idea of hopping into the high-dimensional plate,
combine it with the filtering process, consider specifically the
Laplacian matrix, feed its spectral information into machine
learning to obtain the Persistent Path Spectral(PPS) model,
which can give a quantitative description of the data.

• And test our model on issue of protein-ligand binding affinity
prediction, PPS model can achieve competitive results.
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Definition (Simplicial Complex)
An (abstract) simplicial complex C is a pair (V, CV ) where V is a
vertex set and C is a simplex set, such that every σ ∈ CV is a
nonempty subset of vertex set , and every nonempty subset of σ is
also ∈ CV .

Definition (n-simplex walk,path)
A series of n-simplices σn

1 , σn
2 , ..., σn

l , σn
l+1(not must diverse) is called

an n-simplex walk from σn
1 to σn

l+1 while σn
i and σn

i+1 share an
(n+1)-simplex for each i = 1, 2, ..., l.

Under another additional condition that these n-simplices are different
from each other, this n-simplex walk turns into an n-simplex path.
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Definition (shortest path)
Among all the n-simplex paths between σn

i and σn
j , the ones having

the minimum number of (n+1)-simplexes are called the shortest
n-simplex paths(may more than one).

Definition (path-distance)
The number of (n+1)-simplexes which a shortest n-simplex path
between σn

i and σn
j passes is called the path-distance between

n-simplices σn
i and σn

j , and denoted by dn
i,j.

Definition (k-hopping n-simplex walk,path)
An n-simplex walk σn

1 , σn
2 , ..., σn

l , σn
l+1 is called a k-hopping

n-simplex walk if the path-distance of σn
i and σn

i+1 is k (dn
i,i+1 = k).

When these n-simplices are different from each other, this k-hopping
n-simplex walk turns into a k-hopping n-simplex path.
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Example: hopping path of simplicial complex
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Definition (k-hopping n-simplex connected component)
Given a simplicial complex C, which can be represented by {Cn}n≥0,
here Cn is the collection of all n-simplices. For a subset of Cn,
donated as Xn, if there is a k-hopping n-simplex walk visiting every
n-simplices of Xn at lowest, the subset Xn is defined as a k-hopping
n-simplex connected component of C, which denoted by (k,n)
connected component for simplicity.

• 2-hopping vertex walk:
{v1, v6, v7, v5, v7, v9, v2, v4, v8, v4, v3}

• 3-hopping vertex walk:
{v3, v9, v8, v5, v3, v6}; {v2, v7, v1}; {v4}

• one (2,0) connected component, three
(3,0) connected components

• 2-hopping edge walk:
{[1, 2], [5, 9], [2, 5], [1, 9], [4, 5], [1, 5], [4, 9]}

• 3-hopping edge walk:
{[1, 2], [4, 5], [2, 5], [4, 9]}

• seven (2,1) connected components, ten
(3,1) connected components
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Definition (k-hopping n-simplex connected component)
Given a simplicial complex C, which can be represented by {Cn}n≥0,
here Cn is the collection of all n-simplices. For a subset of Cn,
donated as Xn, if there is a k-hopping n-simplex walk visiting every
n-simplices of Xn at lowest, the subset Xn is defined as a k-hopping
n-simplex connected component of C, which denoted by (k,n)
connected component for simplicity.

• 2-hopping vertex walk:
{v1, v6, v7, v5, v7, v9, v2, v4, v8, v4, v3}

• 3-hopping vertex walk:
{v3, v9, v8, v5, v3, v6}; {v2, v7, v1}; {v4}

• one (2,0) connected component, three
(3,0) connected components

• 2-hopping edge walk:
{[1, 2], [5, 9], [2, 5], [1, 9], [4, 5], [1, 5], [4, 9]}

• 3-hopping edge walk:
{[1, 2], [4, 5], [2, 5], [4, 9]}

• seven (2,1) connected components, ten
(3,1) connected components
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Definition (k-path degree)
k-path degree δk(σn

i ) of σn
i is defined as the count of n-simplices σn

j

such that the path-distance between σn
i and σn

j is k.

Definition ((k,n) path-Laplacian)
The k-path n-simplex Laplacian matrix Ln

k of simplicial complex
C is a N(Cn) order square symmetric matrix whose entries is shown
as follows, denoted by (k,n) path-Laplacian.

Ln
k (C)(i, j) =


δk(σn

i ) , i = j
−1 , dn

i,j = k
0 , otherwise

(1)

Theorem
The number of k-hopping n-simplex connected components is
the multiplicty of zero eigenvalue of (k,n) path-Laplacian.
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Example: Laplacian matrix of C20

Figure: Vertex(0-simplex) path-Laplacian matrices with filtration values
1.0Å, 1.5Å, 2.3Å, 3.3Å, 3.7Å, 4.0Å.
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Example: Persisitent feature of C20
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Definition (path spectral)
The eigenvalues and eigenvectors of the (k,n) path-Laplacian matrix is
called the (k,n) path-spectral of the simplicial complex.

Assume we have a filtration of simplicial complexes, which is a
sequence of nested simplicial complexes

O1 ⊂ O2 ⊂ ... ⊂ Ot

where Oi is a sub-complex of Oi+1(0 < i < t). For each Oi, we
consider its (k, n) path-Laplacian matrix Ln

k (Oi), then we get a
sequence of path-Laplacian matrixes for each pair (k, n)

Ln
k (O1), Ln

k (O2), ..., Ln
k (Ot)

Definition (persistent path spectral)
The persistence and variance of the path-spectral information through
the sequence of path-Laplacian matrixes is called the persistent
path-spectral of the sequence of simplicial complexes.
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Example: Persisitent path-spectral of C20

Figure: Persistent attribute curves from persistent path-spectral for C20.
Left is based on vertex, right is based on edge.
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Motivation

Persisitent Path Spectral(PPS)

Protein-Ligand Binding Affinity Prediction
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Protein-Ligand Complex and Affinity

Figure: Protein-ligand
complex ID: 1b3f.

• A protein-ligand complex is a complex of
a protein bound with a ligand that is
formed following molecular recognition
between proteins that interact with each
other or with various other molecules.

• The highest possible affinity from a
protein towards the ligand, or target
molecule, can be observed when the
protein has a perfect mirror image of the
shape of the target surface together with
a charge distribution that complements
perfectly the target surface.
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shape of the target surface together with
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Protein-ligand binding affinity prediction

• The task of predicting the interactions between compounds and
proteins is the core and foundation of drug discovery, which
consists of protein-ligand interaction, protein-ligand binding
affinity, protein-ligand interaction sites and ligand bioactivity on
proteins.

• Protein-ligand interaction, also known as compound-protein
interaction, is most reliably determined by in vitro experiments
or biochips.

• However, this is extremely costly in the first screening of a
compound, which requires a prohibitively enormous search space.

• To narrow the search space, there is an urgent need to develop
more efficient computational approaches.
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Computational approaches

The computational approaches for protein-ligand binding affinity
pediction are usually called scoring functions (SFs), which can be
generally divided into two groups.

1. One is the classical methods which usually use linear functions to
model the relationship between experimental data and features.
Classical methods can be divided into three groups:

• Physics-based(force-field based) methods
• Empirical (regression-based) methods
• Knowledge-based methods

2. The other is artificial intelligence (AI) based methods which can
capture nonlinear relationship between features and experimental
data. AI based models can be grouped into two categories:

• Machine learning models
• Deep learning models
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Representation of Protein-Ligand Complex

• For the topological representation of a protein-ligand complex, its
binding core region is extracted and characterized by
element-specific representation.

• Euclidean distance and electrostatic distance functions are used
to form the filtration of the representation.

• For each protein-ligand complex, 36 atom combinations are
generated with protein atoms C, N, O, S and ligand atoms C, N,
O, S, P, F, Cl, Br, I. And a filtered bipartite graph is constructed
from every atom-combination where the distance is used as the
filtration value for each edge.

• For electrostatic interactions, H atoms are also taken into
consideration and a total of 50 atom combinations are generated
from electrostatic interactions.
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binding core region is extracted and characterized by
element-specific representation.

• Euclidean distance and electrostatic distance functions are used
to form the filtration of the representation.

• For each protein-ligand complex, 36 atom combinations are
generated with protein atoms C, N, O, S and ligand atoms C, N,
O, S, P, F, Cl, Br, I. And a filtered bipartite graph is constructed
from every atom-combination where the distance is used as the
filtration value for each edge.

• For electrostatic interactions, H atoms are also taken into
consideration and a total of 50 atom combinations are generated
from electrostatic interactions.
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Featurization

• For the topological representation of a protein-ligand complex,
use PPS to obtain feature, which can be combined with machine
learning model.

• For the distance-based PPS model, the filtration goes from 0Å to
10 Å with a step of 0.1 Å, and for the electrostatic-based PPS
model, the filtration goes from 0 to 1 with a step of 0.02.

• We use persistent median value curve and persistent mean value
curve of the persistent spectral with hopping 1, 2 and 3 as the
features.

• The size of features based distance-model is 21600 =
36(atom-combinations) × 100(persistence) × 3(hopping)
× 2, the size of features based electrostatic function is 15000 =
50(atom-combinations) × 50(persistence) × 3(hopping) ×
2. Combined model’s feature size is 36600 = 21600 + 15000.
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Machine Learning
• As one of the most powerful algorithms in supervised learning,

the gradient boosting tree (GBT) algorithm is a machine learning
algorithm that combines decision tree and ensemble learning.

• GBT is widely used and highly inclusive of feature inputs, and
can achieve very robustness and generalization with stable loss
functions.

• The molecular descriptors obtained by PPS are used as feature
inputs to GBT to obtain a machine learning model based on
PPS, which denoted by PPS-ML.

No. of estimators Maximum features Learning rate Loss function
40000 Square root 0.001 Least square

Minimum sample split Subsample size Maximum depth Repetition
3 0.7 6 10

Table: Detailed parameters of GBT
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Datasets

• The PDBbind database is a collection of the experimentally
measured binding affinities exclusively for the protein-ligand
complexes available in the Protein Data Bank(PDB).

• This type of knowledge is the much needed basis for many
computational and statistical studies on molecular recognition.

Dataset Refined set Training set Test set (Core set)
PBDbind-v2007 1300 1105 195
PDBbind-v2013 2959 2764 195
PDBbind-v2016 4057 3772 285

Table: Detailed information of the three PDBbind datasets, i.e.,
PDBbind-v2007, PDBbind-v2013, PDBbind-v2016.
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Result
PDBbind-v2016 Dist Charg Dist+Charg

1-hopping 0.793(1.393) 0.808(1.359) 0.823(1.322)
2-hopping 0.792(1.392) 0.798(1.374) 0.810(1.347)
3-hopping 0.781(1.436) 0.800(1.375) 0.811(1.354)

(1,2,3)-hopping 0.829(1.287) 0.832(1.269) 0.843(1.248)

PDBbind-v2013 Dist Charg Dist+Charg
1-hopping 0.746(1.561) 0.760(1.534) 0.775(1.503)
2-hopping 0.753(1.535) 0.759(1.518) 0.767(1.497)
3-hopping 0.733(1.584) 0.725(1.606) 0.745(1.560)

(1,2,3)-hopping 0.778(1.478) 0.778(1.473) 0.791(1.444)

PDBbind-v2007 Dist Charg Dist+Charg
1-hopping 0.791(1.534) 0.800(1.509) 0.804(1.509)
2-hopping 0.793(1.500) 0.766(1.559) 0.791(1.497)
3-hopping 0.781(1.540) 0.776(1.547) 0.799(1.499)

(1,2,3)-hopping 0.818(1.142) 0.827(1.399) 0.827(1.399)

Table: PCCs and RMSEs of PPS-ML models on three datasets.
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Result

Figure: Performance of PPS-ML model on three datasets.
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Result

• In our model, the feature size is 36600, which is much larger than
the data size of three PDBbind datasets we used.

• We expanded the parameter step by 5 times for feature
generation to do regression to alleviate overfitting problem.

Dataset Original size(36600) Adjusted size(7320)
PDBbind-v2016 0.843(1.248) 0.839(1.257)
PDBbind-v2013 0.791(1.444) 0.790(1.447)
PBDbind-v2007 0.827(1.399) 0.830(1.390)

Table: PCCs and RMSEs of PPS-ML model on three datasets based on
different feature size.
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